(Press et al. 1992), sometimes known as RK4. This method is reasonably simple and robust and is a good general candidate for numerical solution of differential equations when combined with an intelligent adaptive step-size routine. ReferencesAbramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp.
çµµã¨åç»ã§è¦ãã«ãªã¹ ãçµµã¨åç»ã§è¦ãã«ãªã¹ãããã ãã®ã»ã¯ã·ã§ã³ã¯ã±ã³ããªãã¸å¤§ã®åèªå®¢å¡ææ (Honorary Fellow) ã§ãã J.M.T. Thompson ææããæä¾ãããè³æã«åºã¥ãã¦ãã¾ãã(è±èªã®ã¿) ã«ãªã¹åç» ã«ãªã¹ã®åç»ã§ãã ããã£ã³ã°æ¹ç¨å¼ (è»éï¼ã¢ãã©ã¯ã¿ã¼) ããã£ã³ã°æ¹ç¨å¼ (ã¢ãã©ã¯ã¿ã¼ã®ã¿) Fractal Basin Erosion ã«ãªã¹æ¯ãååç» ã«ãªã¹ã¢ãã¡ã¼ã·ã§ã³ å¨æçã«å¤åããã«ãªã¹ã¢ãã©ã¯ã¿ã¼ãã¢ãã¡ã¼ã·ã§ã³ã«ãã¦ã¿ã¾ããã å¼·å¶æ¯ãåã®ã¢ãã©ã¯ã¿ã¼ å¼·å¶æ¯ãåã®ã¢ãã©ã¯ã¿ã¼ï¼ ããã£ã³ã°æ¹ç¨å¼ ãã¼ã¬ã³ãã¢ãã©ã¯ã¿ã¼ Scholarpedia ã®ã¬ã¹ã©ã¼ã¢ãã©ã¯ã¿ã¼ã«ã¤ãã¦ã®è§£èª¬ã«ã¦ã ç§ãä½æããã¬ã¹ã©ã¼ã¢ãã©ã¯ã¿ã¼ã®ã¢ãã¡ã¼ã·ã§ã³ãè¦ããã¨ãã§ãã¾ãã Scholarpediaã®ãã¡ã³ã»ãã«ã»ãã¼ã«æ¯ååã«ã¤ãã¦ã®è§£èª¬
ã©ã³ãã³ã°ãããã£ã¦ãããããã http://tophatenar.com/view/tsugo-tsugo âã³ã£ãããã¾ãããå°æ´ããå æ¸ãªãã¨è¨ããªãã§ãããä»ãã¡ãã£ã¨ãã¤å¡©ã管ã¹ãã¼ã«ã¼ã«ã¤ãã¦æ¸ãã¦ãã¾ãããããå°ãå¾ ã£ã¦ãã ããã Duffing oscillatorï¼ããã£ã³ã°æ¯ååï¼å人ã¡ã¢ç¨ Duffing oscillatorã¯ãå¨æçãªforced oscillatorã§ãéç·å½¢ã®elasticityããã¤ãå¼ã§æ¸ãã¨ã ã§ããã ããæ¸è¡°ä¿æ°ï¼damping constantï¼ã¯ã¨ãããã¾ããã«ãªã¹æ¯ååããã³van der Pol oscillatorã¨ãã¦ãç¥ããã¦ããã Duffing oscillator ã¯ããã®å¤ã«ãã£ã¦ãµãã¾ãããããã 0" class="tex" src="http://d.hatena.ne.jp/cgi-bin/mimetex
Figure 1: Periodic change of the chaotic attractor of the Duffing oscillator for \(\alpha=1\ ,\) \(\beta=-1\ ,\) \(\delta=0.2\ ,\) \(\gamma=0.3\ ,\) and \(\omega=1\ .\) By assembling the Poincaré sections of a trajectory for different phase \(\psi \equiv \omega t \mbox{ mod } 2 \pi\ ,\) the attractor of Duffing oscillator changes periodically (see also Figure 1). Duffing oscillator is an example o
æ¬ãã¼ã¸ã§ã¯ Duffing (ããã£ã³ã°) æ¹ç¨å¼ãæ±ãã¾ããããã¯æ¬¡ã®å¾®åæ¹ç¨å¼ã§è¡¨ããã¾ãã d2x/dt2 = - δdx/dt + x - x3 + γ cos(Ït) ãã ããδ=0.20 , γ=0.30 , Ï=1.0 ãã®æ¹ç¨å¼ãæ°å¤çã«è§£ãã¨ã解è»é x( t ) ãå¾ããã¾ãããã®è»éãæå» T ãã¨ã«ãµã³ããªã³ã°ãã¦ãé¢æ£çãªï¼æ¬¡å ãã¼ã¿ (x( nT ) , dx( nT )/dt ) (n = 0,1,2 ...) ãå¾ã¾ãããã®ã¨ãã T ãå¨æå¤åã®å¨æ (2Ï/Ï) ã¨ä¸è´ãããã¨ã«ãªã¹ã¢ãã©ã¯ã¿ã¼ãç¾ãã¾ãã ãµã³ããªã³ã°ãéå§ããæå»ããããã¨ãå°ãå½¢ãå¤ããã¢ãã©ã¯ã¿ã¼ãç¾ãã¾ãããã®ãã¼ã¸ã«ããã¢ãã¡ã¼ã·ã§ã³ã¯ãããã®ã¢ãã©ã¯ã¿ã¼ãã±ãã±ã漫ç»æ¹å¼ã§ä¸¦ã¹ããã®ã§ãã ã¢ãã©ã¯ã¿ã¼ã®å½¢ç¶ãå¨æå¤åã¨åãå¨æã§å¤åãã¦ãã¾ãã ãããã£ã³ã°æ¹ç¨å¼ã®ã¢ã
is a B-spline. Specific types include the nonperiodic B-spline (first knots equal 0 and last equal to 1; illustrated above) and uniform B-spline (internal knots are equally spaced). A B-spline with no internal knots is a Bézier curve. A curve is times differentiable at a point where duplicate knot values occur. The knot values determine the extent of the control of the control points. -splines are
æå³ã»å¯¾è¨³ 精液ã®ã種åã®ã(種åã®ããã«)çºéã®å¯è½æ§ããããå°æ¥æ§ã®ãããå°æ¥ã®çºå±ãå©ãããç¬åµçã§å°æ¥ã®çºå±ã«å½±é¿ãä¸ãããå½±é¿åã®å¼·ã
ç¾å¨39,000人ãã¾ãã®å¦çãå¦ã³ã4,600人ã®è·å¡ã»å士å·åè£è ãããããã¼ãã«è³åè³è ãå®æ¥å®¶ãæ¿æ²»å®¶ã輩åºãã¦ãã大å¦ã§ãããã¹ã¦ã§ã¼ãã³ãã¨ã¼ãããææ°ã®å¤§å¦ã®ã²ã¨ã¤ã§ããã ä¸ç大å¦ã©ã³ãã³ã°ã«ãã©ã³ã¯ã¤ã³ãã¦ãã大è¦æ¨¡ãªå¦æ ¡ãªãããæ¯è¼çå°äººæ°ã®ã¯ã©ã¹ç·¨æã§è³ªã®é«ãæè²ãè¡ã£ã¦ãããå¦çã»æè·å¡ã¨ãã«å¤æ§ãªå½ç±ã»äººç¨®ã§æ§æããã¦ãããç·å¥³æ¯ã®ãã©ã³ã¹ããããå¤æ§ãªåéã®å®æ¥çåºèº«ãå ¼ä»»ã®å¦çã»æè·å¡ãå¤ããããè¬ç¾©ã»ç 究ã¯å®è·µçã§ãã¢ã«ãããã¯ã¨å®åã®ä¸¡æ¹ã«å¼·ãã修士課ç¨ä»¥ä¸ã§ã¯ãè±èªã§åè¬ãå¦ä½ãåå¾ã§ããã³ã¼ã¹ãè¤æ°ãããçãéã§ããã
ã¡ã³ããã³ã¹
ãç¥ãã
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}