Practical Bayesian Optimization of Machine Learning Algorithms(NIPS2012)ã®è«æç´¹ä»ã§ãã Gaussian Process ã®ç´æçãªã¤ã¡ã¼ã¸ã¨ããã®ä½¿ããæ¹ã解説ãã¾ãããRead less
import whetlab # Grab the experiment scientist = whetlab.Experiment(name='ImageNet') for i in range(300): # Get a hyperparameter suggestion from Whetlab params = scientist.suggest() # Train your model, do cross-validation, and get the model performance performance = fit_model(**params) # Update Whetlab with the performance scientist.update(params, performance) # That's it! # With a few extra lines
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}