This yields a sketching scheme for estimating the cosine similarity measure between two vectors, as well as a simple alternative to minwise independent ...
CAREERzineï¼èº«ãèããªããæ¬å½ã«æå¹ãªãä¼ç»æ¸ã®æ¸ãæ¹ãã®ãã©ã¼ããããã¯ãªã§ãã åä¾ãéè¦ãã è«æã«ã¯å 容ã¨çµæã主張ã®ç¬èªæ§ã¯æ±ãããã¾ãããå½¢å¼ã«ã¤ãã¦ã¯ç¬èªæ§ãæ±ãããã¾ãããããããç¬èªæ§ãé«ãåä¾ã«ãããã£ã¦ããªãè«æã¯ãã¡ãªæ§æã®è«æã§ããã¨ã¿ãªãããå¾åã«ããã¾ãã ä¼ç»æ¸ãæ¸ãã¨ããã¨ãã«ãç°åããã¦ã§ããã¨ããæ°ããä»äºã§ããã¨ããããããå ´åã¯å¿ ãããã®é¨éã§ã®ä¼ç»æ¸ã«ç®ãéãã¦ããã¹ãã§ããã©ãããé çªã§æ¸ãã¦ããããã©ããæåããã¦ãããããªã©ã«çç®ãã¦ããã¾ãããããããã¯ãåä¾ã¨ãªãä¼ç»æ¸ããã©ã¼ãããã ã¨æã£ã¦æç« ãä¸æ¸ããã¦ããã®ãæå¹ã§ãã ï¼CAREERzineï¼èº«ãèããªããæ¬å½ã«æå¹ãªãä¼ç»æ¸ã®æ¸ãæ¹ãããï¼ ç 究ãã¼ããæ稿å ã®å¦è¡éèªãå½éä¼è°ã«ãã£ã¦è«æãéãããããã©ã¼ãããã¨ããã®ã決ã¾ã£ã¦ãããã¨ãå¤ãã§ããå¿ ãæ稿å ã®å¦
Inductive Semi-supervised Learning with Applicability to NLP Anoop Sarkar and Gholamreza Haffari anoop,ghaffar1@cs.sfu.ca School of Computing Science Simon Fraser University Vancouver, BC, Canada http://natlang.cs.sfu.ca/ 2 Outline ⢠Introduction to Semi-Supervised Learning (SSL) ⢠Classifier based methods: Part 1 â EM, Stable mixing of Complete and Incomplete Information ⢠SSL using Generative Mo
ä¸é¨ã§æåã«ãªã£ã¦ãã¾ãããç®çã¨ãªãå¦ç¿ã¨ãcorrelationãããå¥ã®å¦ç¿ãåæã«è¡ãªããã¨ã§ããã¼ã¿ã®æ§é ãå©ç¨ãã¦semi-supervised learning ãã§ãããã¨ããè«æã§ãã Ando & Zhang http://www-cs-students.stanford.edu/~tzhang/papers/jmlr05_semisup.pdf ãããããSemi-Supervised Learning Literature Surveyãä»ãå ãã¦ããã¾ãã http://www.cs.wisc.edu/~jerryzhu structured output åãã® semi-supervised learningã http://ttic.uchicago.edu/~altun/pubs/AltMcABel-NIPS05.pdf ãããããk-NNã§ä½ã£ãmatr
Xiaojin Zhu Computer Sciences TR 1530 University of Wisconsin Madison [ Download the latest survey (July 19, 2008) ] Archives: [ July 19, 2008] [ June 24, 2007] [ December 9, 2006] This is an online publication. It surveys the field of semi-supervised learning, a branch under machine learning and more generally artificial intelligence. It originates as a chapter from the author's Ph.D. thesis. The
ã¿ã¤ãã«å¥å ããã« ãã¤ã¬ã ã ãªã±ã« ãã¦ãã ã³ã¦ã·ã³ ã ã³ã¦ãªãã« ã¢ã«ã´ãªãºã Efficient Dynamic Update Algorithms for a Double-array Structure èªç¶è¨èªå¦ç ãã©ã¤æ§é ã¯ãã¼ã®è¡¨è¨æååä½ã«æ§æãããæ¨æ§é ãç¨ãã¦æ¤ç´¢ãããã¼æ¤ç´¢ææ³ã®1ã¤ã§ããï¼èªç¶è¨èªè¾æ¸ãä¸å¿ã¨ãã¦åºãç¨ãããã¦ããï¼ãã®ãã©ã¤æ§é ãå®ç¾ãããã¼ã¿æ§é ã¨ãã¦é«éæ§ã¨ã³ã³ãã¯ãæ§ãæºè¶³ããããã«é åæ³ããããï¼ãã®ææ³ã¯ï¼ãã¼ã®æ´æ°ãé »ç¹ã«çããªãæ¤ç´¢æ³ã¨ãã¦ç¢ºç«ãã¦ããããï¼åçæ¤ç´¢æ³ã«æ¯ã¹ã¦è¿½å æéã¯é«éã§ããã¨ã¯ãããï¼ã¾ãåé¤ã§çããä¸è¦ãªãã¼ããæªä½¿ç¨è¦ç´ ã«ããè¨æ¶éã«ç¡é§ãçãã¦ããï¼æ¬è«æã§ã¯ãããã®åé¡ã解決ãï¼ããã«é åãåçæ¤ç´¢æ³ã¨ãã¦ç¢ºç«ããããï¼æªä½¿ç¨è¦ç´ ãé£çµãããã¨ã§è¿½å å¦çãé«éåããææ³ï¼åé¤æã«çããä¸è¦ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}