ãªããå£ã¢ã¸ã¥ã©ã¼æ§ã«ã¤ãã¦ããã«ç¥ãããæ¹ã¯ããã¥ã¼ããªã¢ã«ï¼»3ï¼½ãåèã«ãªãã¾ãã æ¨å¹´ã®NIPSã§ã®åå ããã§ã¯ãæ¨å¹´ã®NIPSã§ã®ååãè¦ã¦ã¿ã¾ãããã Bachï¼»4ï¼½ã¯ãLâãã«ã ãå£ã¢ã¸ã¥ã©ã¼é¢æ°ã®ãã´ã¡ã¼ã¹æ¡å¼µããå°åºã§ãããã¨ã示ããã¨ã«ãã, å£ã¢ã¸ã¥ã©ã¼æ§ã¨ã¹ãã¼ã¹æ§ã¨ã®é¢ä¿ã示ãã¾ãããããã«, ãã®æ´å¯ããæ師ããå¦ç¿ã§ç¨ãããã¨ãã§ããæ°ãã3ã¤ã®ãã«ã ãææ¡ãã¾ãããã¾ããå¾é æ³ãè¿æ¥æ³ãå£ã¢ã¸ã¥ã©ã¼é¢æ°æé©åã«ä½¿ãããã¨ã示ã, å®é¨ã«ããL1,ã¨L2ãã«ã ãç¨ãããã精度ãè¯ããã¨ã示ãã¾ããã Stobbe and Krauseï¼»5ï¼½ã¯ãå£ã¢ã¸ã¥ã©ã¼é¢æ°ãå¹é¢æ°ã®åã¨ãã¦å解ã§ããæ°ããã¯ã©ã¹ï¼decomposable submodular functionï¼ãå®ç¾©ã, ã«ããåé¡, ãã«ã³ã確çå ´ã®æé©å, éå被è¦åé¡ãªã©ããã®æ°ããã¯ã©ã¹ã®æå°åå
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, computer graphics and visualization, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields.
ï¼ï¼£ï¼®ï¼®ï¼Â ãã¤ã³ãåæ±é¨ã¢ã«ããã£ã«ãã©ãã·ã¥å·ã§ãã®ã»ã©ãããã¾ã§è¨é²ããã¦ããªãã£ãæªç¥ã®è¨èªã®åå¨ãæããã«ãªã£ããç¾å°ã§èª¿æ»ããè¨èªå¦è ãã«ããã¨ããã®è¨èªã¯ä½¿ç¨è ããããï¼ï¼ï¼äººã§ãæ¶æ» ã®å±æ©ã«ç´é¢ãã¦ããã è¨èªå¦è ã®ãã¼ã ã¯ãã·ã§ãã«ã¸ãªã°ã©ãã£ãã¯åä¼ãæ¯æ´ããå°æ°æåãè¨èªç 究ã®ä¸ç°ã§ãå¤ãã®è¨èªãæ··å¨ããåå·ã訪ãã¦ãããå·å ã®ä¸é¨å°åã§ä½¿ããããã¢ã«ãããã¸ãã¨ããï¼ã¤ã®è¨èªãè¨é²ãããã¨ç¾å°ã®æ°å®¶ã訪ãæ©ããªãã§ãçºé³ãé³ã®çµã¿åãããã¾ã£ããç°ãªããã³ããã¨ããè¨èªããããã¨ã«æ°ã¥ããã¨ãããä¾ãã°ãè±ã¯ã¢ã«èªã§ãã´ã©ããã³ãèªã§ã¯ãã¬ã¬ãã®ããã«å¼ã°ããããã¼ã ãçããç±³ã¹ã¯ã¼ã¹ã¢ã¢å¤§å¦ã®ãã¼ãããã»ããªã½ã³åææã¯ãã¢ã«èªã¨ã³ãèªã®é¿ãã«ã¯ãè±èªã¨æ¥æ¬èªã»ã©ã®å¤§ããªéãããããã¨ææããã ããªã½ã³æ°ã«ããã¨ãã³ãèªã¯æ±ã¢ã¸ã¢ããä¸å¤®ãæ±åãåã¢ã¸ã¢ã«ããã¦
Contax T2 @Sterling Hall of Medicine, Yale University ãã®éã®ã人ãè²ã¦ãã©ãã®ç¹å¾´ãã¨ããã¨ã³ããªã«ã¤ãã¦ããã¯ãã³ã¡ã³ãã§é ãããã¨ã >大å¦é¢æè²ã«ããã¦ãã©ããªã£ããã人ãè²ã£ããã¨è©ä¾¡ã§ããã®ãããã®åºæºãåããã¦æãã¦ããã ããã¨å¬ããããããç 究ãé²ããããã®å®åçãªè½åãã身ã«ã¤ããã¨ãããã¨ã§O.K.ï¼(pollyannaããï¼ ã«ã¤ãã¦å°ãèãã¦ã¿ããã¨æãã ããã£ã¦ã大å¦é¢æè²ã£ã¦ï¼åãæå´ããããã¨ï¼ä½ã®ããã«ããã®ããã¨ãã極ãã¦éè¦ãªèª²é¡ãã®ãã®ãæ·±é ãã©ããã¯ãã®ã¨ã³ããªã®å¾ã§èãã¦é ãã¨ãã¦ãã大äºãªãã¼ãã§ãããã¨ã¯ééããªãã ã§ãããã§ã¯æ¥æ¬ã®å¤§å¦é¢ã¨ç±³å½ã®å¤§å¦é¢ãã¡ãã£ã¨åãã¦èãã¦ã¿ãããåã¨ã³ããªã«ãå°ãæ¸ãã¾ããããç§å人ã¨ãã¦ãææ§å¸å¤§ã¨æIvy schoolã®éã§ãã©ããã©ãã¨ãããã
ä¹³ããã§ä¹³æ¿ãåé¤ããæ£è ã®ãããä¹å·å¤§ã大éªå¤§ãªã©ã¯æ¬äººã®å¹¹ç´°èã使ã£ã¦ä¹³æ¿ãåçãããæ²»é¨ã«ä¹ãåºãæ¹éã決ãããï¼ï¼ï¼ï¼å¹´æ¥ã«è¤æ°ã®å½ç«å¤§ãå»çæ©é¢ãªã©ã«ããç 究çµç¹ãè¨ç«ããï¼ï¼å¹´ï¼æã¾ã§ã«æ²»é¨ãéå§ããè¨ç»ãããèªç¶ãªä¹³æ¿ãå復ããåãçµã¿ã§ãå¥åº·ä¿éºãé©ç¨ãããå»çã¨ãã¦å®çãç®æãèãã ã 幹細èã使ãä¹³æ¿å建ã¯ãããã¾ã§ä¹å·å¤§ã¨ä¹å·ä¸å¤®ç é¢ï¼ç¦å²¡å¸ï¼ã§è¨åºç 究ãè¡ã£ãã»ãã横æµå¸ã®æ°éã¯ãªããã¯ãªã©ä¸é¨ã§å®æ½ããã¦ããããæ²»é¨ã¨ãã¦ã¯åãã¦ã¨ãªãã ç¾å¨ã¯ãã·ãªã³ã¼ã³ãæ¬äººã®èèªã®ç§»æ¤ã主æµããããã·ãªã³ã¼ã³ã«ã¯ææçã®å±éºæ§ãèèªã¯ä½å ã«å¸åããå¹æãæç¶ããªããªã©ã®æ¬ ç¹ããããã¾ãå¥åº·ä¿éºãé©ç¨ãããªãã ä¸æ¹ã幹細èã¯ä½ãä½ã大ãã¨ã®ç´°èã§ãç¹å®ã®ç´°èã«å¤åãããèªåãã³ãã¼ãããã§ãããä¹å·å¤§ãªã©ã®å建æ³ã¯ãæ¬äººã®è ¹é¨ããï¼ï¼ï¼ãï¼ï¼ï¼ããªã»ãªããã«åå¾ã®èèªãæ¡å
ãµã¨ã次ã®å¿åããã°ãç®ã«ã¨ã¾ã£ãã ãã¡ä¿®å£«èª²ç¨å¦çã®ç 究ãã¼ãæ±ºå® ãã®é¢çãããè«æã®ãæ°è¦æ§ãã«ããã£ã¦ããããã§ããã è«æã®æ°è¦æ§ã¨ããè¨èãããããªããæå³ã¯ããããä»ã®äººã®çä¼¼ããããããã ãã ã¨ãããã¨ã ããããããã©ãããã°ããã®ãçç®è¦å½ãä»ããªãã ããã«é¢é£ãã話ããå æ¥ã®4åçã¼ãã§ï¼ãã¯ãåããããªãä½ããã£ã¦ããã®ãããããªãã対çã¨ãã¦ï¼è©±ãããã®ã§ãå½¼ã®é¢çããã«ã¯ä»ããã®ãã¨ãããããªãããã¡ãã£ã¨ããã§åé²ãã¦ããããã å¦è¡è«æã«ãããæ°è¦æ§ã¨ããªãªã¸ããªãã£ã¨ãã«ã¤ãã¦ããã®è¾æ¸çãªæå³ã«ã¨ãããã¦âããã¾ã§ã¾ã£ããåå¨ãã¦ããªãã£ã説ãä»ã«ä¾åããã«åµé ããâã¿ããã«æããå¦çãããããããã¯ã¾ã£ããã®èª¤ãã§ãããå¦è¡è«æã«ããã¦ã¯ããã®åå¨æ義ãæ°è¦æ§ãªã©ã¯ãã¹ã¦ä»äººã®å£ããèªãããªããã°ãªããªãã ããé åã«ã¤ãã¦ã®å è¡ç 究ã調æ»ãããã¨ã«
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}