å人çãªèå³ããcassandraã«ã¤ãã¦ããã¹ã¦ã¿ã¾ããã ééã£ã¦ããé¨åãªã©ãææã質åãªã©ããã°ãç¥ããããã ããã¨ããããã§ããRead less

Apr 18, 2010Download as KEY, PDF841 likes139,801 views The document summarizes how Twitter handles and analyzes large amounts of real-time data, including tweets, timelines, social graphs, and search indices. It describes Twitter's original implementations using relational databases and the problems they encountered due to scale. It then discusses their current solutions, which involve partitionin
ã¦ã¼ã¶ã¼å士ã®ã¤ãªãããå ã«æç³»åã«140æåã®ã¡ãã»ã¼ã¸ã20åã»ã©è¡¨ç¤ºããââãTwitterã®ãµã¼ãã¹ã¯ãæåã«ãã¦ãã¾ãã¨å®ã«ã·ã³ãã«ã ããèå¾ã«ã¯é常ã«å¤§ããªæè¡çãã£ã¬ã³ã¸ã横ããã£ã¦ãããã¤ã¶ããæ°ã¯æé10åä»¶ãçªç ´ãTwitterãæµããã¡ãã»ã¼ã¸æ°ã¯ç§é120ä¸ã«ãéããã¦ã¼ã¶ã¼å士ã®ã¤ãªããã表ãã½ã¼ã·ã£ã«ã»ã°ã©ãã§ããã¡ã¢ãªã«è¼ãéãè¶ ãã¦ãããéæ¹ããªãã¹ã±ã¼ã«ã®ãã¼ã¿ãã¤ãªãã§ããã«ãé¢ãããã0.1ç§ä»¥ä¸ã§Webãã¼ã¸ã®è¡¨ç¤ºãå®äºãããªããã°ãªããªãããã®ããã«åãã¼ã¿ã¹ãã¬ã¼ã¸ã¯1ï½5msç¨åº¦ã§å¿çããªããã°ãªããªãã Twitterã®ãªã¹ãæ©è½ã®å®è£ ã§ããã¸ã§ã¯ããªã¼ãã¼ãåãããã¨ãããNick Kallenæ°ãæ¥æ¥ãã2010å¹´4æ19æ¥ãã2æ¥éã®äºå®ã§éå¬ä¸ã®ãQCon Tokyo 2010ãã§åºèª¿è¬æ¼ãè¡ã£ãããData Architecture
Getting Good IO from Amazon's EBS Wed Jul 29 00:23:52 -0700 2009 The performance characteristics of Amazonâs Elastic Block Store are moody, technically opaque and, at times, downright confounding. At Heroku, weâve spent a lot of time managing EBS disks, and recently I had a very long night trying to figure out how to get the best performance out of the EBS disks, and little did I know I was testin
å¹³ç´ ããã¯ã¦ãªã¢ããªã¹ããå©ç¨ããã ãããããã¨ããããã¾ãã ã¯ã¦ãªã¢ããªã¹ã¯ã2014å¹´7æ1æ¥ããã¡ã¾ãã¦ããµã¼ãã¹ã®æä¾ãçµäºããã¦ããã ãã¾ããã ããã¾ã§ãå©ç¨ããã ãã¾ããã¦ã¼ã¶ã¼ã®çãã¾ã«æ·±ãæè¬ãããã¾ãã èª ã«ãããã¨ããããã¾ããã 詳ããã¯ä¸è¨ãã覧ãã ããã http://d.hatena.ne.jp/hatenamono/20140512 æ ªå¼ä¼ç¤¾ã¯ã¦ãª
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}