ãã°ã¤ã³
ã¯ã¦ãªã°ã«ã¼ãã®çµäºæ¥ã2020å¹´1æ31æ¥(é)ã«æ±ºå®ãã¾ãã 以ä¸ã®ã¨ã³ããªã®éããä»å¹´æ«ãç®å¦ã«ã¯ã¦ãªã°ã«ã¼ããçµäºäºå®ã§ããæ¨ããç¥ãããã¦ããã¾ããã 2019å¹´æ«ãç®å¦ã«ãã¯ã¦ãªã°ã«ã¼ãã®æä¾ãçµäºããäºå®ã§ã - ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ ãã®ãã³ãæ£å¼ã«çµäºæ¥ã決å®ãããã¾ããã®ã§ã以ä¸ã®éãã確èªãã ããã çµäºæ¥: 2020å¹´1æ31æ¥(é) ã¨ã¯ã¹ãã¼ãå¸æç³è«æé:2020å¹´1æ31æ¥(é) çµäºæ¥ä»¥éã¯ãã¯ã¦ãªã°ã«ã¼ãã®é²è¦§ããã³æ稿ã¯è¡ãã¾ãããæ¥è¨ã®ã¨ã¯ã¹ãã¼ããå¿ è¦ãªæ¹ã¯ä»¥ä¸ã®è¨äºã«ãããã£ã¦æç¶ãããã¦ãã ããã ã¯ã¦ãªã°ã«ã¼ãã«æ稿ãããæ¥è¨ãã¼ã¿ã®ã¨ã¯ã¹ãã¼ãã«ã¤ã㦠- ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ ãå©ç¨ã®ã¿ãªãã¾ã«ã¯ãè¿·æãããããããã¾ãããã©ãããããããé¡ããããã¾ãã 2020-06-25 è¿½è¨ ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ã®ã¨ã¯ã¹ãã¼ããã¼ã¿ã¯2020å¹´2æ28
4. 深層å¦ç¿ ⢠è±èªã§ã¯Deep Learning ⢠ç¹å¾´ã®æ°æ®µã®çµã¿åãããèæ ®ãããã¨ã§ããè¤é ãªç¾è±¡ãå¦ç¿ããä»çµã¿ ⢠ç¥çµç¶²åè·¯(ãã¥ã¼ã©ã«ã»ãããã¯ã¼ã¯)ã®å±¤ãéãã ãã¨ã§å¦ç¿ãããã¨ãæ®ã© ⢠人éã®è³ã®ä»çµã¿ã«ä¼¼ã¦ããï¼ â¢ ã¨ã«ããï¼æ§ã ãªèªèã¿ã¹ã¯ã§å¤§å¹ ã«è¯ã精度ã示 ãã¦ããï¼Google, Facebook,Microsoft,â¦ãªã©å¤ãã®ä¼ æ¥ãç 究éçºããã¦ããï¼ 4 6. 6 å ±é Deep Learning in the News 13! Researcher Dreams Up Machines That Learn Without Humans 06.27.13 Scientists See Promise in Deep-Learning Programs John Markoff November 23, 2012 Google!taps!
ä»å¹´ã¯ãDeep Learningãç 究ããäºå®ï¼2014/1/4ï¼ã ã£ãã®ã ããã©ãå¤å±¤ãã¼ã»ãããã³ã¾ã§å°éããï¼2014/2/5ï¼ã¨ããã§å°ã ï¼ï¼ï¼è¶³è¸ã¿ãã¦ãããDeep Learningã®æ§æè¦ç´ ã§ãããã«ããã³ãã·ã³ãç解ããã®ã«æéåã£ã¦ããããã ããã«ããã³ãã·ã³ã®ç解ã«ã¯ããã«ã³ã確çå ´ãMCMCã®ç解ãå¿ è¦ãªãã¨ãããã£ãã®ã§å°ãå»»ãéãã¦ã¢ã³ãã«ã«ãæ³ãå ã«åå¼·ï¼2014/6/20ï¼ãã¦ããã¨ããããã ãã ãããã°ããã§ã¯å°ã éå±ã«ãªã£ã¦ããã®ã§å°ãå åãã㦠Deep Learning ã®å é§è ã®Bengioãããæ¸ããè«æ Learning Deep Architectures for AI ãåå¼·ãã¦ããã示åã«å¯ãè¦è§£ãå¤ãã®ã§ãã¨ã§æ¯ãè¿ãããããã«è¨é²ãã¦ããããã ã¾ãã¯ã1.1ç¯ã®Desiderate for Learning AIã®é¨åã人工ç¥è½ã
AdaGrad(Adaptive Gradient)ã¨ãããªã³ã©ã¤ã³å¦ç¿ã®ã¢ã«ã´ãªãºã ãå®è£ ãã¾ããã https://github.com/echizentm/AdaGrad è«æ: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization(http://www.magicbroom.info/Papers/DuchiHaSi10.pdf) AdaGradã¯AROWã®ããã«éã¿ã®æ´æ°ãé©å¿çã«è¡ããã¨ãåºæ¥ãã»ããæ£ååã®ã¢ã«ã´ãªãºã ã¨çµã¿åããããã¨ãåºæ¥ãã¨ããå©ç¹ãããã¾ãã ãã®ããFOBOSãRDAãªã©ãç¨ããL1æ£ååã«ãã£ã¦ç¹å¾´éãçã«ãããã¨ãåºæ¥ã¾ããä»åã¯RDAã¨çµã¿åãããAdaGradãperlã§å®è£ ãã¾ããã RDAãç¨ããçç±ã¯ä¸è¨è«æã§FOBOSãããé«æ§è½ã ã£ã
photo by Régis Gaidot ãã¼ã¿ã»ããã¨ãã®ç¥è¦ãéãã¾ããã ãããã¼ã¿ã»ãããªããã¨èª¿ã¹ãæ©ä¼ããã£ãã®ã§ãå¾ãç¥è¦ãã¾ã¨ãã¦ã¿ã¾ããã ããã«ã¤ãã¦ã¯ãã§ã«è¯ãæ å ±ããã§ã«ãã£ãã®ã§ãã®ãªã³ã¯ãç´¹ä»ãã¾ãã 奥 å¥å¤ª - æ å ±æ¨è¦ç 究ãã¼ã«ããã¯ã¹ grouplensã®ãã¼ã¿ã»ããã¯ãè«æãªã©ã«ãå©ç¨ããã¦ããã®ãè¦ããã¾ããã 注æç¹ã¨ãã¦ã¯ ã»EachMovieãªã©ã¯å©ç¨ã§ããªã ã»MovieLensãDeliciousãLast.fmã¯datå½¢å¼ã®ãã¡ã¤ã« ã»WikiLensã¯dumpãã¦ä½¿ãããã«ããã¦ãã ã»Book-Crossingã¯csvã¨sql ã»jesterã¯Excelãã¡ã¤ã« ã¨ãããã¨ã§ãã ãã以å¤ã 㨠ãããã - the Datahub æ å ±å¦ç 究ãã¼ã¿ãªãã¸ã㪠ãã¼ã¿ã»ããä¸è¦§ livedoor ã°ã«ã¡ã®ç 究ç¨ãã¼ã¿ã»ããã§ãã 20
2. èªå·±ç´¹ä» â¢â¯ æ°æ½ã«ããé·å²¡æè¡ç§å¦å¤§å¦ã§ä¿®å£«ã¾ã§6å¹´ã â¢â¯ ï¼æãããã¼ã¿åæã®ãä»äºå§ãã¾ããã â¢â¯ è·å ´ã¾ã§å¾æ©0åã§ãã â¢â¯ 主ãªä½¿ç¨è¨èª â¢â¯ PythonãRãã·ã§ã«ã¹ã¯ãªãã  ï¼+  mcmdï¼ â¢â¯ Clojure  ãã¡ããã¡ããå¦ç¿ä¸ â¢â¯ åã åã® Â Tokyo.R  ã§ã¯  ãR  ã§ãã¤ã¨ããã  ã¨ãã ã¿ã¤ãã«ã§  LT  ãã¾ããã â¢â¯ http://www.slideshare.net/tojimat/diet-by-r 2
å¤åå ã®ç¤¾å åå¼·ä¼ã§ãæ©æ¢°å¦ç¿ãç¨ããææ¸æ¨è¦*1ã«é¢ããåºæ¬çãªãã¨ããã«ã¤ãã¦èª¬æãã¾ããããã®è³æãå ¬éãã¾ãã ããã°ã©ãã®ããã®ææ¸æ¨è¦å ¥é from y-uti æ°å¦ãã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ãå°éçã«å¦ãã§ããªãã¨ã³ã¸ãã¢ã§ãç解ããããããã«ãã§ããã ãæ°å¼ã使ããã«èª¬æããã¤ããã§ããå³å¯æ§ã«ã¯ãã ãã£ã¦ããªãã®ã§ãå°é家ããã¯ãã¡ãã¡ããã³ããåããå 容ããããã¾ããã ããã°ã©ãåãã¨ãããã¨ã§ãå®éã«ã³ã³ãã¥ã¼ã¿ä¸ã§åä½ã確èªã§ããããã«ãWikipedia ã®ãã¼ã¿ã対象ã«ãã¦é¡ä¼¼ææ¸æ¤ç´¢ãè¡ãã¹ã¯ãªãããä½æãã¾ãããGitHub ã«ç½®ãã¦ããã¾ãã y-uti/document-recommendation · GitHub *1:æ¨è¦ã¨ããããæ å ±æ¤ç´¢ãé¡ä¼¼ææ¸æ¤ç´¢ã¨ããæ¹ãé©åã ã£ãããããã¾ããã
6. åã¢ã¸ã¥ã¼ã«ã®å½¹å² lï¬â¯ ãµã¼ãã¼ã»ã¯ã©ã¤ã¢ã³ã lï¬â¯ msgpack-rpcãµã¼ãã¼ã»ã¯ã©ã¤ã¢ã³ãã¨ãã¦æ¯ãèã lï¬â¯ ã ãããâ¾èªåâ½£çæããã lï¬â¯ ãã©ã¤ãã¼ lï¬â¯ â½£çãã¼ã¿ï¼â½ææ¸ãªã©ï¼ãå¦ç理ãã層 lï¬â¯ ç¹å¾´æ½åºãéã¿ä»ããå¦ç¿ãçµã³ã¤ããå½¹å² lï¬â¯ ã³ã¢ lï¬â¯ ãã¯ãã«ãåãåãâ½£çã®å¦ç¿å¨ lï¬â¯ ãã¯ãã«ãâ½£çæããâ½£çã®ç¹å¾´æ½åºå¨ lï¬â¯ æè¿ãªãã¸ããªãåé¢ï§ªããï¼jubatus_coreï¼ 6
Tomas Mikolovãã«ãã£ã¦ææ¡ããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼CBOW, Skip-gramï¼ã®ãªã¼ãã³ã½ã¼ã¹å®è£ word2vecã«ã¤ãã¦ãåºæ¬çãªä½¿ãæ¹ãä½é¨ããããã«ãã®ä»çµã¿ãå¦ã¶æ¸ç±ã§ãã åºæ¬çãªä½¿ãæ¹ãããèªåã®å¥½ããªã³ã¼ãã¹ã®ä½ãæ¹ãç»å ´ã®èæ¯ãä»çµã¿ãããã«ã¯å¿ç¨ä¾ãå¼±ç¹ã«ã¤ãã¦ãã³ã³ãã¯ããªããªã¥ã¼ã ã§æ¦è¦³ã§ãã¾ããä»é²ã«ã¯word2vecã®åºåçµæã主æååæã使ã£ã¦å¯è¦åããæ¹æ³ã«ã¤ãã¦è§£èª¬ãã¦ãã¾ãã èè ã®è¥¿å°¾ããã«ããæ¬æ¸ã®è§£é¡[ãªã³ã¯] ã¯ããã« 1ç« ãword2vecã使ã£ã¦ã¿ã æ¸ãæãã¦ã¿ãã 2ç« ãã³ã¼ãã¹ãå¤ãã¦ã¿ã text8 åèªã«åå²ããï¼MeCabï¼ CSVããã®ã³ã¼ãã¹ä½æ Facebook EPWING Wikipedia PDFããã®æãåºã ã¾ã¨ã 3ç« ãword2vecã®çã¾ããçç± æç« ã®è¡¨ç¾ 4ç« ãword2vecã®ä»çµ
2. â¾èªâ¼°å·±ç´¹ä» lï¬ å¾å± Â èª ä¹ Â (Seiya  Tokui) æ ªå¼ä¼ç¤¾Preferred  Infrastructure,  Jubatus  Pj.  ãªãµã¼ãã£ã¼ lï¬ å°â¾¨éã¯æ©æ¢°å¦ç¿ï¼ä¿®â¼ 士ãç¾è·ï¼ lï¬ â ç³»åï¦ã©ããªã³ã°âããã·ã¥ã»è¿åæ¢ç´¢ï¥ªâ深層å¦ç¿ lï¬ ä»ã®èå³ã¯æ·±å±¤å¦ç¿ã表ç¾å¦ç¿ãåæ£å¦ç¿ãæ å解æ lï¬ @beam2d  (Twitter,  Github,  etc.) 2 /  47 3. 2011å¹´ï¦:  ⾳é³å£°èªè識ã«ãããæå lï¬ lï¬ 3 /  47 DNN-âââHMM  ã使ã£ã⼿ææ³ããâ¾³é³å£°èªè識㮠 word  error  rate  ã§å¾æ¥ æ³ Â (GMM)  ãã  10%  åå¾ãæ¹å æºå¸¯ç«¯æ«ã«ãããâ¾³é³å£°æä½ã«  Deep  Learning  ãå©ï§â½¤ç¨ãããããã« F. Seide, G. Li and D. Yu.
ï¼â»ã¯ã¦ãªãã©ãã©ã¤ãã®ä¸å ·åã§æ£ãããªãé çªã§ç»åã表示ããã¦ããå¯è½æ§ãããã¾ãï¼ ãã¦ããããªè¨äºãã¯ãªã¹ãã¹ã»ã¤ã´ã®ãã¬ã¼ã³ãã«ããã®ã¯ã¢ã¬ãªãã§ããï¼ç¬ï¼ãæ師ããå¦ç¿ï¼åé¡å¨ç³»ã§ã¯ä¸æ¦ããã§ã·ãªã¼ãºãããäºå®ã§ãã ããªã飾ãã®ã¯ã©ã³ãã ãã©ã¬ã¹ããã¢ã³ãµã³ãã«å¦ç¿ã®ä»£è¡¨é¸æã§ããããã©ã³ãã ãã©ã¬ã¹ãæå¼·ãã¨ãè¨ã£ã¡ãã人ãå¤ãããããã§ãã*1ããããã人ã«ã¯ãã²ä»åï¼ã¨æ¬¡åäºå®ã®5ååã¾ã¨ãï¼ã®è¨äºãèªãã§ããããããªãã¨æãã¾ãã ä»åã®åèæç®ããã³ã¯ã®èãæ¬ã§ããpp.193-197ã«æ±ºå®æ¨ããã®ã³ã°ãã¢ããã¼ã¹ãã®å¾ã«ã©ã³ãã ãã©ã¬ã¹ãã®èª¬æãããã¾ãã ã¯ããã¦ã®ãã¿ã¼ã³èªè ä½è : å¹³äºæä¸åºç社/ã¡ã¼ã«ã¼: 森ååºççºå£²æ¥: 2012/07/31ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼è³¼å ¥: 1人 ã¯ãªãã¯: 7åãã®ååãå«ãããã° (4件) ãè¦ã ä»ã ã¨ãä¾
Machine Learning Advent Calendaråãã®è¨äºã§ãã æ®æ®µã¯Gunosyã¨ããä¼ç¤¾ã§ç¤¾é·æ¥ãããªãã社é·ããã¦ãã¾ãã ãã£ãããã㨠çµè«ã ãç¥ããã人ã¯ããã ã åºåã«ãããæ©æ¢°å¦ç¿ã®å¿ç¨ã®å¤ãã¯CTRäºæ¸¬ãéç¨ã®æé©åã®ãã(ã¯ã¨ãªã¼äºæ¸¬ã¨ã)ã®äºæ¸¬åé¡ ä»å¾ã¯ãCVRã®äºæ¸¬ãããã¢ã¯ãã£ããªã¦ã¼ã¶ã¼ã®äºæ¸¬ããããããªè©±é¡ã«ãªã(å ãã¦ãã®éç¨ãã©ãæé©åãããã¨ãã£ã話é¡ã) ç¾å¨ã¯æ¤ç´¢ã¨ã³ã¸ã³ã®å¿ç¨ä¾ãå¤ããä»å¾ã¯ãã£ã¹ãã¬ã¤åºåãã¿ã¤ã ã©ã¤ã³åºåã¸ã®å¿ç¨ãå¢ãã¦ãã å人ã®ã¦ã¼ã¶ã¼å±æ§ãéãããã¨ãä»ã¾ã§ä»¥ä¸ã«ã¡ãã£ã¢ã®ãã¸ãã¹çã«éè¦ã«ãªã åºåãæ¨è¦ã¨ã³ã¸ã³ã«éãããã¡ã¤ã³ç¥èã¯é常ã«éè¦ããã¡ã¤ã³ç¥èã¨æ©æ¢°å¦ç¿ã®ç¥èãæã£ãã¨ã³ã¸ãã¢ãææ決å®ã«æºããä¼ç¤¾ã¯ä»å¾å¤§ããã®ã³ã(ã¨æã) åºåã«ã¤ã㦠æè¿ã¯ãã£ã±ãåºåã®éçºããã¦ãããåºååéã§
2. ç´¹ä» ï½ å²¡  å³â¾¥éï§©æµ Â (æ©â¼¤å¤§ç理⼯工M1) ï½ åºâ¾èº«ãä½ã¾ãç Â Â Â Â Â æ¨ªæµ ï½ è¶£å³âãæ ç»éè³,  ã·ã³ã»  /  kaggleæ´ Â 3ã¶â½æ ï½ å¥½ããªç©âãredbullã¨æè¿ã¯ãã¯ã ï½ @0kayu ç 究   è³ç»åã⽤ç¨ãã診æè£å©æ³ã®éçº 2 3. DEEP LEARNING 1.  Deep  Learning  㮠 ä»çµã¿ ã¹ã©ã¤ã ããããã! 2.  Deep  Learning  ãã©ã¡ã¼ã¿/å¦ç¿æ³  ã«ã¤ã㦠3.  å®è£ :  ããã±ã¼ã¸èª¿ã¹  â ä»æ¥ã¯ãã!!!!!!!!!!! ãã£ã¼ãã©ã¼ãã³ã°ããã£ã¨ããã£ã¨æ軽㫠3
ãã¥ã¼ã¹ã¢ããªSmartNews(https://www.smartnews.be/)ã®èæ¯ã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦TokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)ã§è©±ããã¦ããã ããéã®è³æã§ãã â¢SmartNews iphoneç: https://itunes.apple.com/jp/app/id579581125 â¢SmartNews Androidç https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android â¢SmartNewséçºè ããã° http://developer.smartnews.be/blog/Read less
2. èªå·±ç´¹ä» ï¬ æ¯æ¸å°å¹³ï¼HIDO Shoheiï¼ ï¬ TwitterID: @sla ï¬ å°éï¼ãã¼ã¿ãã¤ãã³ã°ãæ©æ¢°å¦ç¿ ï¬ çµæ´ï¼ ï¬ 2006-2012: IBMæ±äº¬åºç¤ç 究æãã¼ã¿è§£æã°ã«ã¼ã ï¬ æ©æ¢°å¦ç¿(ç¹ã«ç°å¸¸æ¤ç¥)ã®ã¢ã«ã´ãªãºã ç 究éçº ï¬ ã客æ§æ¡ä»¶ã§ãã¼ã¿è§£æããã¸ã§ã¯ãã«å¾äº ï¬ 2012-: æ ªå¼ä¼ç¤¾ããªãã¡ã¼ãã¤ã³ãã©ã¹ãã©ã¯ãã£ã¼ ï¬ å¤§è¦æ¨¡ãªã³ã©ã¤ã³åæ£æ©æ¢°å¦ç¿åºç¤Jubatusãã¼ã ãªã¼ãã¼ ï¬ 2013-: Preferred Infrastructure America, Inc. ï¬ Chief Research Officer 2
è¿½è¨ 2016å¹´3æã«ä»¥ä¸ã®è¨äºã«ãã£ã¦ãã®å 容ã¯updateããã¦ãã¾ããä»å¾ã¯ãã¡ãããèªã¿ä¸ããã 主ã«èªååãã®ã¾ã¨ãã¨ããæå³åããå¼·ããã§ããï¼ç¬ï¼ãåãå®éã«2013å¹´6æç¾å¨webãã¼ã¿åæï¼ãã¼ã¿ãµã¤ã¨ã³ã¹ã®å®åã§ãã¼ã«ã»ã©ã¤ãã©ãªã»ããã±ã¼ã¸ãå©ç¨ãã¦ãããã®ã«éã£ã¦ãçµ±è¨å¦ã»æ©æ¢°å¦ç¿ç³»ã®åæææ³ã10åæãã¦ç´¹ä»ãã¦ã¿ããã¨æãã¾ãã è¿½è¨ å帰åæï¼ç¹ã«ç·å½¢éå帰åæï¼ ç¬ç«æ§ã®æ¤å®ï¼ã«ã¤äºä¹æ¤å®ã»ãã£ãã·ã£ã¼ã®æ£ç¢ºç¢ºçæ¤å®ï¼ 主æååæ(PCA) / å ååæ ã¯ã©ã¹ã¿ãªã³ã° 決å®æ¨ / åå¸°æ¨ ãµãã¼ããã¯ã¿ã¼ãã·ã³(SVM) ãã¸ã¹ãã£ãã¯å帰 ã©ã³ãã ãã©ã¬ã¹ã ã¢ã½ã·ã¨ã¼ã·ã§ã³åæï¼ãã¹ã±ããåæã»ç¸é¢ã«ã¼ã«æ½åºï¼ è¨éæç³»ååæ ãããã« ãã¾ã1ï¼ãç´ æ§ãã¯ãã«ï¼åé¡ã©ãã«ããªããã¼ã¿åå¦ç ãã¾ã2ï¼ã°ã©ãçè«*10 {igraph}ããã±ã¼ã¸ã§ã°ã©
2. DeepLearning lï¬â¯ å°â¾¨é家åãã®æ å ±ã¯ãããããªå ´æã§â¼¿æã«â¼å ¥ã lï¬â¯ DeepLearning.net lï¬â¯ Google+ DeepLearning Group lï¬â¯ â¼äººâ¼¯å·¥ç¥è½å¦ä¼  é£è¼è§£èª¬ãDeep Learningï¼æ·±å±¤å¦ç¿ï¼ã lï¬â¯ ååéã®å©ï§â½¤ç¨â½ æ¹æ³ãæ´å²ãç理è«ï¥ãå®è£ ã«ã¤ã㦠lï¬â¯ ç§ã第3åå®è£ ç·¨ãæ¸ãã¦ãã¾ã lï¬â¯ Deep Learningã®è©±ã¯â¼ä¸é¨ã®æ©æ¢°å¦ç¿å±åãã®è©±ãªã®ãï¼ âå¦ lï¬â¯ ä»â½æ¥ã¯â¼ä¸è¬åãã«Deep Learningã説æãã¦ã¿ã¾ã 2
2. 解æåæ© 2013å¹´5æ18æ¥Tokyo WebMining #26 2 æå¾ã®æ¥ã ãç»åå¦çã®åå¼·ã§ããã¨ãã å¾è¼©ããAV女åªã®é¡ä¼¼ç»åæ¤ç´¢ã®è©±ãèã ï¼ã±ããã 2012ï¼ DMMã«ã¯ã¢ãã£ãªã¨ã¤ããã£ãã㪠ããã§ã¦ã§ããµã¼ãã¹ä½ãã°å²ãããã 決ãã¦ä¸å身ããã®è¦æã§è§£æããã®ã§ã¯ããã¾ãã http://blog.parosky.net/archives/1506 3. è¨ç®ç°å¢ 2013å¹´5æ18æ¥Tokyo WebMining #26 3 使ç¨è¨èªï¼Python ï¼ï¼ï¼ ï¼å°ãã ãRï¼ ä½¿ç¨ã¢ã¸ã¥ã¼ã«ï¼Numpy, Scipy, OpenCV ç§å¦æè¡è¨ç®ç¨ã®ã©ã¤ãã©ãª MATLABã«ã§ãããã¨ã¯å¤§ä½ã§ãã ï numpy.ndarray åä»ãå¤æ¬¡å é å ï numpy.linalg ç·å½¢ä»£æ°è¨ç® ï scipy.cluster ä»åã¯ããã®k-meansæ³ã使ç¨
追è¨2 2015å¹´æ«ã®æç¹ã§ã®ææ°ãªã¹ãã¯ãã¡ãã§ãã è¿½è¨ ãã®è¨äºã®5ã«æå¾ã«ããå°ãæ´æ°ããå 容ã®ããè¦ãæ¬ãªã¹ããè¨äºã2ã¤upãã¦ã¾ãã®ã§ãã¡ãããèªã¿ãã ããã 2013å¹´ç§çï¼ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããç®æããªãæãã¦ããã¹ã10å - å æ¬æ¨ã§åããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®ããã° 2013å¹´ç§çï¼ãã¼ã¿åæåå¿è ã«ãè¦ããããåºç¤ãæ¬å½ã«ã¼ãããå¦ã¶ãããã®ããã¹ã5å - å æ¬æ¨ã§åããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®ããã° ä»åã¯ãåãå®éã«èªç¶ç§å¦ã®ç 究è ãããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¸ã¨è»¢èº«ããã«å½ãã£ã¦ããã¤ãèã«ç½®ãã¦ããããã¹ããååãåèã«ãã¦ããããã¹ããã¾ã¨ãã¦ç´¹ä»ãã¾ãã â»ä»¥ä¸åãæã£ã¦ãããã®ã«ã¯ãï¼ããæã£ã¦ããã¾ã*1*2*3 çµ±è¨å¦ çµ±è¨å¦å ¥é (åºç¤çµ±è¨å¦) ä½è : æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æ室åºç社/ã¡ã¼ã«ã¼: æ±äº¬å¤§å¦åºçä¼çºå£²æ¥: 1991/07/09ã¡
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}