Philosophy We strive to create an environment conducive to many different types of research across many different time scales and levels of risk. Learn more about our Philosophy Learn more
overview of the Merlin FrameworkBuilding recommender systems can be quite challenging. When we talk about recommender systems we often focus on providing the most relevant recommendations to the users. Think of YouTube recommending you the next video to watch or Amazon suggesting related products you might like. But recommender systems in the real-world have two other major tasks that they need to
ããã¹ãé§åéçºãããSQLã¢ã³ããã¿ã¼ã³ããã¯ããã¨ããæè¡æ¸ã®ç¿»è¨³è ããã¾ãã¾ãªITä¼æ¥ããããæ©ãæè¡é¡§åãããã«æè¿ã§ã¯ã¨ã³ã¸ãã¢ãªã³ã°æåãä¼ããè¬æ¼è ã¨ãã¦ãæ´»èºããã¦ããåç°å人ãã(https://twitter.com/t_wada)ã ãã®ã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã¨ãã¦ã®ç´ é¡ãæ ªå¼ä¼ç¤¾ä¸ä¼CTOã®ä¼è¤ç´ä¹ãã(https://twitter.com/naoya_ito)ãèãåºã対è«ã®åç·¨ã§ã¯ãä¸ç·ãç»ãã¨ã³ã¸ãã¢ã§ããç¶ããããã«èªãã®ããã¸ã§ã¯ãã§æèçã«ã³ã¼ããæ¸ãã¦ããã¨ããåç°ããã®å§¿å¢ã«å§ã¾ããããã©ã³ã¨ãã¦ãæè¡ã®ãããããèªã¿è§£ãã±ã¼ã¹ã¹ã¿ãã£ã¨ãã¦DDDï¼Domain-Driven Designï¼ãé¡æã«è©±ã伺ãã¾ãã ã»ä¼è¤ ç´ä¹ãã / æ ªå¼ä¼ç¤¾ ä¸ä¼ãå·è¡å½¹å¡ CTO æ°åå ¥ç¤¾ãããããã£æ ªå¼ä¼ç¤¾ã§ããã°ãµã¼ãã¹ãã³ã³ãã°ããç«ã¡ä¸ããCTOãåã
æ¬æ¸ã®æ§æ 第1ç« ãããµããµãããã®ã¬ãã«ãã説æãã¦ãããã®ãã 第ï¼ç« ã®éä¸ããã®ã¢ã¢ãããã¦ãã¦ããã¹ã¼ãã¼ã¹ã«ã©+ã¹ã¼ãã¼ãã¤ãã©ã¤ã³åãã§ç¾ä»£ã®CPUã®è¦æ¨¡æã®ãããªãã®ãæãç¥ããã¨ã«ãªãã¾ããé 調ã«CPUã®ä¸ãæµããå½ä»¤åã¯ã¾ãã§ãã¤ã¢ã¬ã©ã®æ»ã®ããã ã§ãã¡ãã£ã¨ãããã¨ã§ãã®æµãã¯æ¢ã¾ã£ã¦ãã¾ãããã®ããã«ãã£ã®å¤§ãããå®æãããã¨ã«ãªãã¾ãã 第3ç« ãã第8ç« ã§ãCPUã®å¦çã®æµããæ¢ãããã¾ãã¾ãªè¦å ãèªããã¦ããã¾ãã 第9ç« ã¯ããã«ãããã»ããµããä¸æ®µã¨è¤éã«ãªãè¦å ã§ãããç¾ä»£ã®CPUã§ã¯å¤ããªããã®ã 第10ç« ãã第12ç« ã§ãå ±æã¡ã¢ãªåãã«ãããã»ããµã§ã®ãã«ãã¹ã¬ãããããã¨ãã®æ³¨æç¹ãèªããã¦ããã¾ãã 第13ç« ãã¾ã¨ãããã以éã¯ä»é²ã§ãã ç§ã¨ãã¦ã¯ç¬¬9ç« ã®ããã«ãããã»ããµã以éãé常ã«åå¼·ã«ãªãã¾ãããã¼ãããã¨ããããã£ã¦ãªãã£ããã¨ãããã§ã¯
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}