1. åå
æ°ã¨ã¯ ãåå
æ°(ããããã)ãã¨ã¯ãã¯ã©ã¼ã¿ããªã³(quaternion)ãã¨ãå¼ã°ããã²ã¨ã¤ã®å®æ°(ã¹ã«ã©ã¼)ã¨ã²ã¨çµã®3次å
ã¹ã¯ãã«ã§è¡¨ãããæ°ã§ã[*1]ã3次å
ã¹ã¯ãã«ã¯3ã¤ã®è¦ç´ ã§æç«ã¡ã¾ãã®ã§ãã²ã¨ã¤ã®ã¹ã«ã©ã¼ã¨è¨4ã¤ã®æ°(å
)ã§æ§æãããããããã®åãã¤ããã®ã§ãããã åå
æ°ã¯ã4次å
ã¹ã¯ãã«ã¨ãã¦ã®æ§è³ªããã¡ã¾ããããããããã«å ãã¦ããã¯ãã«ã«ã¯ãªãä¹æ³ãå®ç¾©ããã¦ãã¾ããã¨ãã«ãåå
æ°ã®ä¹ç®ã§ã3次å
座æ¨ç©ºéã«ãããå転ã表ãããã¨ãç¹é·ã§ãã [*1] å®æ°ãtã3次å
ã¹ã¯ãã«ãV = (x, y, z)ã¨ããã¨ããåå
æ°Qã¯å¾è¿°ã3. åå
æ°ã®å®ç¾©ãã®ã¨ããã¤ãã®ããã«ç¤ºããã¾ãã Q = (t; V) ã¾ã㯠Q = (t; x, y, z) 2. è¤ç´ æ° åå
æ°ã¯ãè¤ç´ æ°ãæ¡å¼µããæ°ã¨æãããã¨ãã§ãã¾ããããã§ãåå
æ°ã説æããåã«ãè¤ç´ æ°ã«ã¤ã
{{#tags}}- {{label}}
{{/tags}}