ã¿ã°æ¤ç´¢ã®è©²å½çµæãå°ãªããããã¿ã¤ãã«æ¤ç´¢çµæã表示ãã¦ãã¾ãã
ã¤ã³ã¿ã¼ããããªã©ã®éä¿¡ã®å®å ¨æ§ãé«ãããããéåæå·éä¿¡ãã¨å¼ã°ãã次ä¸ä»£ã®æå·éä¿¡æè¡ã®éçºãé²ãããã¦ãã¾ãããä½ã³ã¹ãã§ã³ã³ãã¯ããªè£ ç½®ã®å®ç¾ã«æ¬ ãããªãä¿¡å·å¦çã®ææ³ã®éçºã«ãæ±äº¬å¤§å¦ã®ç 究ã°ã«ã¼ããä¸çã§åãã¦æåããéåæå·éä¿¡ã®æ®åã«åãã¦æå¾ ãéã¾ã£ã¦ãã¾ãã ã¤ã³ã¿ã¼ããããªã©ã®éä¿¡ã§ã¯ããã¾ãã¾ãªãã¼ã¿ãæå·åããã¦ããã¨ãããã¦ãã¾ãããã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ã¼ãã¯ããã«è¶ ãããéåã³ã³ãã¥ã¼ã¿ã¼ããæ¬æ ¼çã«å®ç¨åãããã¨ãä»ã使ããã¦ããæå·ã¯ç°¡åã«è§£èªããã¦ãã¾ãããããããã¾ãã ãã®ããçè«ä¸ã絶対ã«ç ´ãããªãã¨ããããéåæå·éä¿¡ãã¨å¼ã°ããã次ä¸ä»£ã®æå·éä¿¡æè¡ã®éçºãé²ãããã¦ãã¦ãæ¥æ¬ã¯å»å¹´ãæ±èãäºæ¥åãçºè¡¨ãããªã©ãæè¡éçºã§ä¸çããªã¼ããã¦ãã¾ãã ç¾å¨ãå®ç¨åããã¦ããæè¡ã¯ãå åã¨å¼ã°ããå ã®ç²ã«ä¿¡å·ãè¼ãã¦éä¿¡ããæ¹å¼ã§ããã極å°ã®ç²ãæ±ã
第1次AIãã¼ã (1950年代ï½1960年代) æ¨è«ã¨æ¢ç´¢ã®AIã§ãã¼ã ã«ãªã£ãã 1966å¹´ã«éçºãããELIZA(ã¤ã©ã¤ã¶)ãã«ã¼ã«ãã¼ã¹ã§ä½ãããã«ãé¢ããããã¥ã¼ãªã³ã°ãã¹ãã®å¯©æ»å¡ã欺ããã å¾ã«ELIZAã¯PARRY(ãã¼ãªã¼)ã¨ãä¼è©±ãã¦ããã æ¨è«ã¨æ¢ç´¢ã§ã¯ãã¤ã»ãããã¬ã ãã解ããã«è¡°éããã 第2次AIãã¼ã (1980年代) å°é家ã®ç¥èãå®å¼åããã¨ãã¹ãã¼ãã·ã¹ãã ãããä¸é¨ã®é åã§ææãåºãããã¨ã§ãã¼ã ã¨ãªã£ãã (DENDRAL(ãã³ãã©ã«ï¼ææ©ååç©ç¹å®AI)ãMYCIN(ãã¤ã·ã³ï¼æçç©è³ªå¦æ¹AI)) ããããç¥èã®ããã«ããã¯ã®åé¡ã§å®å¼åãé£ããè¤éãªåé¡ã«å¯¾å¿ã§ããªãã£ãããè¡°éããã 第3次AIãã¼ã (2000年代ï½) ãã£ã¼ãã©ã¼ãã³ã°ãææãåºãç¾å¨ã¾ã§ã«è³ããã¼ã ã¨ãªã£ãã å¾é æ¶å¤±åé¡ã解æ¶ãã¤ã¤ãããã¯ã¼ã¯ãå¤å±¤åãããã¨ã§å¤å½©ãªè¡¨ç¾åã
ããããã㨠波形ãã¼ã¿ã解æããããã®çå±çãªå´é¢ãæ´çããã㨠ãã£ã¦ã¿ã 波形ãã¼ã¿ã®ä¸è¬å½¢ æ³¢ã®ãã¼ã¿ã¯ãè²ã ãªsinæ³¢ãåæãããã®ã sinæ³¢ã¨ãã£ã¦ãã大ãããéããã®ãå¨æ³¢æ°ãéããã®ãã¡ãã£ã¨æ¨ªã«ãºã¬ãï¼ããããä½ç¸ãéãï¼ãã®ãªã©ãããã ä½ç¸ããããsinæ³¢ã¯ãsinã¨cosã®åã§è¡¨ç¾ã§ããã ã¤ã¾ãã sin(x + Ï) = Aã»sin(x) + Bã»cos(x) ã®ããã«æ¸ããã¨ãã§ããã ãã®ãã¨ãããã©ããªæ³¢å½¢ãã¼ã¿ãã F = (a1ã»sin(x) + b1ã»cos(x)) + (a2ã»sin(2x) + b2ã»cos(2x)) + ã»ã»ã» ã®ãããªå½¢ã§è¡¨ç¾ã§ããã ãããã解æ sin(2x)ã®ã2ãã®é¨åã¯ãããããå¨æ³¢æ°ããªã®ã§ãa2ã»sin(2x)ã§ã®a2ã¯ãã2ãã®å¨æ³¢æ°ãã©ããããã®å¤§ããã§å ¥ã£ã¦ãããã¨ãããã¨ã ã¤ã¾ããæ³¢ F ã«å¯¾ãã¦ãa
ã»é³ã®ããã°ã©ãã³ã°ãé³é¿æ¥½ã®åºæ¬ãããããï¼ ã»é³ã®ä¿¡å·å¦çãã¦ãããã«è§£èª¬ï¼ ã»æ楽å¨ã»ç®¡æ¥½å¨ã»å¼¦æ¥½å¨ã»éµç¤æ¥½å¨ã®é³ãæãã¨ã§ä½ããï¼ ã»ã½ã¼ã¹ã³ã¼ãã¯Webãããã¦ã³ãã¼ãå¯è½ï¼ æ¬æ¸ã¯ãã³ã³ãã¥ã¼ã¿ã§é³ä½ãããã¦ã¿ããæ¹ã«åããããµã¦ã³ãããã°ã©ãã³ã°ã®å ¥éæ¸ã§ããé³ä½ãã«èå³ããããã©ä½ããã¯ããããã¨ããåå¿è ã®ããã«é³é¿ã®åºæ¬ãã解説ãã¯ãããã³ã³ãã¥ã¼ã¿ã§ã®é³ã®èãæ¹ãé³ãå å·¥ãããã£ã¸ã¿ã«ä¿¡å·å¦çã®åºç¤ãã¦ãããã«èª¬æããã·ã³ã»ãµã¤ã¶ãã¨ãã§ã¯ã¿ã®é³ä½ããªã©ã解説ãã¾ããããã«ããã¾ãã¾ãªé³é¿åæã®ãã¯ããã¯ã¨ã¨ãã«ããã®å ·ä½ä¾ã¨ãã¦ãã¼ããã楽å¨é³ãã¤ããåºããã«ã¹ã¯ã©ããåæã®ã¬ã·ããç´¹ä»ãã¾ãããµã¦ã³ãããã°ã©ãã³ã°ã®è¨èªã«ã¯ãé³ãã¼ã¿ã®èªã¿æ¸ãã¯ãã¡ããã波形ãå¨æ³¢æ°ç¹æ§ãããã¦ã¹ãã¯ããã°ã©ã ã®æç»ãç°¡åã«è¡ãããPythonãæ¡ç¨ãã¦ãã¾ãã Pythonã使
ããã«ã¡ã¯ï¼ å å¶å¾¡å±ã®âã¯ãã¶ãâ@Cpp_Learningã§ãã 以åãæ©æ¢°å¦ç¿æªä½¿ç¨ã§æç³»åãã¼ã¿ãåæããæ¹æ³ã«ã¤ãã¦è¨äºãæ¸ãã¾ããã ããã¼ã¿åæå ¥éãæ©æ¢°å¦ç¿æªä½¿ç¨ï¼Pythonã§ã¼ãããå§ããæ¯å解ææ©æ¢°å¦ç¿(深層å¦ç¿å«ã)ã«ãããã¼ã¿ãµã¤ã¨ã³ã¹ãæµè¡ã£ã¦ãã¾ããããã¼ãªã¨è§£æãªã©ã®æ¯å解æã«ãããç°å¸¸æ¤ç¥ãè¡ããã¨ãã§ãã¾ããæ¬è¨äºã¯ãã¼ã¿åæ/æ¯å解æå¦ã¶ããã®å®è·µçãªãã¥ã¼ããªã¢ã«è¨äºã§ãã...
Pythonãé ãçç± Pythonãé«éåããåã«ããªãPythonã¯ãããªã«ãé ãã®ãã調ã¹ã¦ã¿ã¾ãããããããã°Pythoné¢ä¿ã®ããã°ãå§ãã¦1å¹´ã»ã©çµã¡ã¾ãããå¦çé度ã«ã¤ãã¦ã¯å ¨ãæèãã¦ãã¾ããã§ããã Pythonã¯ç¹ã«foræã¨ãã£ãã«ã¼ãç³»ã®æãé ãé ãã¨ä¸éã§è¨ããã¦ãã¾ãã ã§ããªãã§é ãã®ã§ãããï¼ æ£ç´åã¯ãããªã«æ å ±å·¥å¦ã«è©³ãããªãã®ã§ãä¸ã ã¤ã¡ã¼ã¸ã§ãã¦ãã¾ããã§ãããã以ä¸ã«ç解ã®åèã¨ãªã£ãããã°ãããã¾ããã®ã§ããã¤ãã¡ã¢ãã¦ããã¾ãã âGILï¼ã°ãã¼ãã«ã¤ã³ã¿ããªã¿ããã¯ï¼ã§ããããâ âã¤ã³ã¿ããªã¿è¨èªã§ãã³ã³ãã¤ã«ãããªãããâ âåçåä»ãè¨èªã§ããããâ POSTD:ãªãPythonã¯ãããªã«ãé ãã®ãï¼ â¦Pythonãé ãçç±ã«ã¯è²ã ãªè¦å ãèããããã¿ããã§ãããåçåä»ãè¨èªã§ããã¨ããã®ãä¸çªããããããã§ãã foræã§ã¯éä¸å
ã¢ããã°ã»ããã¤ã»ãºã§ã¯ããã¾ãã¾ãªã¢ããªã±ã¼ã·ã§ã³ã«å¯¾å¿ããããã»ããµããç¨æãã¦ãã¾ããããã»ããµãããã³é«ç²¾åº¦ã¢ããã°ã»ãã¤ã¯ãã³ã³ããã¼ã©ã®è©³ç´°ã«ã¤ãã¦ã¯ã以ä¸ããã覧ãã ããã SHARC DSPã®ã¢ã¼ããã¯ãã£æ¦è¦ SHARC製åä¸è¦§ çµè¾¼ã¿ãã¤ã¯ãããã»ããµ(Blackfin)ã®ã¢ã¼ããã¯ãã£æ¦è¦ çµè¾¼ã¿ãã¤ã¯ãããã»ããµ(Blackfin)製åä¸è¦§ ã¢ããã°ã»ãã¤ã¯ãã³ã³ããã¼ã© 以ä¸ã®è³æã§ã¯ããã¸ã¿ã«ä¿¡å·å¦çï¼DSPï¼ã®åºæ¬çãªæ¦å¿µã説æãã¦ãã¾ããã¾ãããã詳細ãªæ å ±ã«ã¤ãã¦ã®æ§ã ãªæ¨å¥¨æç®ãªã³ã¯ãå«ã¾ãã¦ãã¾ãã DSPã«ã¤ã㦠ãã¸ã¿ã«ã»ã·ã°ãã«ã»ããã»ããµï¼DSPï¼ã¨ã¯ããã¸ã¿ã«åãããé³å£°ããªã¼ãã£ãªãæ åãã¼ã¿ãã温度ãå é度ãªã©ã®ã»ã³ã·ã³ã°æ å ±ã«å¯¾ãã¦ããã£ã«ã¿ãªã³ã°ã解æãä¼éã®ããã®ç®è¡æ¼ç®ãé«éã«å®è¡ããããã»ããµã®ãã¨ã§ããDSPã¯ãå ç®ãæ¸ç®ãä¹
è¿å¹´Googleæ¤ç´¢ã¯å®å ¨ã«æ å ±åéã®åºæ¬ã«ãªã£ã¦ãã¾ããWebã¹ã¯ã¬ã¤ãã³ã°ã§èªåæ å ±åéãããå ´åãGoogleæ¤ç´¢çµæãæ±ããããã«ãªãã¨ä¸çä¸ã®æ å ±ãã·ã¹ãããã£ãã¯ã«å¦çã§ããããã«ãªãã¾ããããã§ã¯ãGoogleæ¤ç´¢ã§å¾ãããã¿ã¤ãã«ã¨URLãä¸è¦§ã§åå¾ããæ¹æ³ãç´¹ä»ãã¾ãã ããã«ã¡ã¯ãwat(@watlablog)ã§ãã Webã¹ã¯ã¬ã¤ãã³ã°ã§Googleæ¤ç´¢çµæãèªå¨ã«æããããã«ãªã£ã¦ãã¾ããã®ã§ãããã§ã¯æ¤ç´¢ã¿ã¤ãã«ã¨URLãä¸è¦§ã§åå¾ããæ¹æ³ãç´¹ä»ãã¾ãï¼ Googleæ¤ç´¢ãèªååããã¡ãªãã3é¸ ããã°ãã¼ã¿ã容æã«åå¾ã§ãã Googleæ¤ç´¢ã¯ç¾ä»£ã®æ å ±åéã®åºæ¬ã¨ãªã£ã¦ãããå½ããã°ãå§ãæ§ã ãªWebãµã¤ãããããã¯ã¼ã¯ãä»ãã¦æ¤ç´¢ã§ããããã«ãªã£ã¦ãã¾ãã Googleãå§ãã¨ããæ¤ç´¢ã¨ã³ã¸ã³ããã¯ãããããããã°ãå ¬çæ©é¢ãæ°éä¼æ¥ã®ãã¼ã¸ã«ç¹ãã£ã¦ããã®
fitbitã¨ã¯ï¼ é»æ± ã®æã¡ãè¯ããã£ãããã¹ç¨ã¹ãã¼ãã¦ã©ãã fitbit(ãã£ããããã)ã¨ã¯ãè æè¨åã®æ´»åéè¨ã§ãæè¨ã®è£ã®å¿ææ°ã»ã³ãµã¼ã§è ã®è¡ç®¡ããå¿ææ°ãè¨æ¸¬ããæ©è½ãåºæ¬ã«ãæ©æ°ãæ¶è²»ã«ããªã¼ãç¡ç æéã¨ãã£ããã¼ã¿ãèªåã§è¨é²ãã¦ããã¾ãããã£ãããã¹ã«ç¹åãã¦ãã¾ãã åã¯Macbook ProãiPhoneãiPadãWindowsæ©ã¨ã¯å¥ã«æã£ã¦ãããå³ããã¨ãæºAppleä¿¡è ã®ããã«ãªã£ã¦ãã¾ãããfitbitãæ°å¹´é使ã£ã¦ããäºã§æªã ã«Apple Watchã¯è³¼å ¥ãã¦ãã¾ããã fitbitè³¼å ¥å½æã®Apple Watchã¯ã¾ã å¿ææ°ã»ã³ãµã¼ã®ç²¾åº¦ã®å£ã³ãè©ä¾¡ãå¾®å¦ã ã£ãã®ã¨ãé»æ± ã®æã¡ãå§åçã«fitbitåªä½ã§ãã£ãäºãè¦ãã¦ãã¾ãã ææ°ã®Apple Watchãå é»ã¯1æ¥ã2æ¥ã«1å(1æéã»ã©)ç¨åº¦ã§ããããï¼ ãããªä¸ãfitbitã¯ããããªã¼æ
ã»ã³ãµã¼ãªã©ããå§ã¾ãä¿¡å·ãããã«é«ç²¾åº¦ã«å¦çãã¦ãã¸ã¿ã«åãã¦ãããããã®ã·ã°ãã«ãã§ã¼ã³åè·¯è¨è¨ã製åã®åªå£ã決ããã¨ãã£ã¦ãéè¨ã§ã¯ããã¾ããã çµé¨å¤ããã®ãããã¨ãããã¦ããã¢ããã°åè·¯è¨è¨ã®ãã¦ãã¦ãåç´è ã®æ¹ã§ããç解é ããããã«è§£èª¬ãã¾ãã ãã©ã¼ã ãè¨å ¥ããã¨ãã¹ã¦ã®ã»ãã·ã§ã³åç»ãã覧ããã ãã¾ãã å®é¨ã§å¦ã¶ãªãã¢ã³ãã®åºç¤ ãªãã¢ã³ãã®ãã§ã ãã¢ã³ã㢠ã¬ãã«ã®ãã¤ã¢ã¹é»æµã測ã£ã¦ã¿ã é«ç²¾åº¦ã·ã°ãã«ãã§ã¼ã³ã®ãã¤ãºè§£æã»è¨è¨ææ³ 1+1ã2以ä¸ã«ããã³ã³ãã¸ããã»ã¢ã³ãåè·¯ã®è¨è¨
åºã使ããã¦ããPythonãæ´»ç¨ãã¦ããã¼ãªã¨è§£æãå¦ã¶ä¸åãPythonã§æ°å¦çãªå¦çãããçµé¨ããªãã¦ãåé¡ããã¾ãããç§å¦æè¡è¨ç®ã§å¿ é ã®ã©ã¤ãã©ãªNumPyã¨matplotlibã«ã¤ãã¦ãåºæ¬ãã解説ãã¦ãã¾ãã å¾æ¥ã®ãã¼ãªã¨è§£æã®æç§æ¸ã«ã¯ãã¾ãåé²ããã¦ããªãã£ããä¿¡å·å¦çã¸ã®å¿ç¨ãçãè¾¼ã¾ãã¦ãããã¨ãç¹å¾´ã§ãä¿¡å·ãå¨æ³¢æ°ã§è¦ãã¨ããæ°ããè¦ç¹ãå¾ããã¾ãã å¿ è¦ãªç®æã«ã¯è¨¼æãã¤ãã¦ãããã«ãã¼ã°ç©åã®ã¨ã³ã¸ãã¢åãã®ã¦ã¼ã¶ã¼ãºã¬ã¤ãããããªã©ãæ°å¦çãªé¢ãããåºç¤ãå¦ã¹ã¾ããæçµçã«ã¯SciPyã©ã¤ãã©ãªã使ã£ã¦ãåç«ã®é³´ã声ã®ã¹ãã¯ããã°ã©ã ãä½ãã¬ãã«ã«ã¾ã§éãããã¨ãã§ãã¾ãã æ¬æ¸ã¯ï¼ãã¼ãªã¨è§£æã¨ä¿¡å·å¦çã®å ¥éæ¸ã§ããæ¬æ¸ãèªãã§å¾ãããç¥èã¯ï¼å¤§ããåãã¦ï¼ãã¼ãªã¨è§£æã®æ°å¦çåºç¤ï¼ä¿¡å·å¦çã®åçã¨ä½¿ãæ¹ï¼Pythonã«ããç§å¦æè¡è¨ç®ã®åºç¤ï¼ã®ä¸ã¤ã§ãã
ãã®è¨äºã§ã¯ä¿¡å·å¦çã«ç¨ãããã£ã«ã¿ã«ã¤ãã¦ã¾ã¨ãã¾ããé»æ°åè·¯ãä¿¡å·å¦çã«ããããã¤ãºé¤å»ãªã©æ§ã ãªåéã§ãã£ã«ã¿ãå©ç¨ããã¾ãããã£ã«ã¿ã«é¢ãã説æåç»ã¯æä¸é¨ã«ç½®ãã¦ãã¾ãã ä¸è¬çãªãã£ã«ã¿ã«ã¤ã㦠ãã£ã«ã¿ç¹æ§ã®å¨æ³¢æ°ãããã ãã¼ãã¹ãã£ã«ã¿ ãã¤ãã¹ãã£ã«ã¿ ãã³ããã¹ãã£ã«ã¿ 帯åé»æ¢ãã£ã«ã¿ ãã£ã«ã¿ã®è¨è¨ææ³ ãã£ã«ã¿ã®å©ç¨ä¾ ãã£ã«ã¿ã«é¢ããé¢é£åç» é¢é£è¨äº èªå·±ç´¹ä» ä¸è¬çãªãã£ã«ã¿ã«ã¤ã㦠以éã§ã¯ãã£ã«ã¿ã«ããä¿¡å·å¦çã«ã¤ãã¦èª¬æãã¾ãããã£ã«ã¿ã«ã¯æ§ã ãªç¨®é¡ãããã¾ããä¾ãã°ãæµä½ä¸ã«æ··ãã£ãåºä½ãç°ç©ãåãé¤ãè£ ç½®ããç´ã使ç¨ãããã®ããéå¨ã§ãããããã¯è±èªã§ãã£ã«ã¿ï¼filterï¼ã¨å¼ã³ã¾ããã¾ãé»åã¡ã¼ã«ãã£ã«ã¿ã§ã¯ã¦ã£ã«ã¹ã¡ã¼ã«ãã¹ãã ã¡ã¼ã«ãªã©ä¸è¦ãªã¡ã¼ã«ãå¤å¥ãã¦éé¢ããã¨ãã£ãå½¢ã§å¦çãããã¾ããããããã£ã«ã¿ã¨å¼ã³ã¾ãã ãã®è¨äºã§ã¯é»æ°ã
Pythonã§Webã¹ã¯ã¬ã¤ãã³ã°ã®ã³ã¼ãã£ã³ã°ããã¦ããã¨ãxpathã«ããæ å ±æ½åºã便å©ã§ããã¨ãããã¾ããããããHTMLã®æ§é ãæ¯å解æããã®ã¯ãã£ããã§ããChromeæ¡å¼µæ©è½ã§ãããXPath Helperãã使ãã°ç°¡åã«ä»»æè¦ç´ ã®xpathãåå¾ãããã¨ãå¯è½ã§ãã ããã«ã¡ã¯ãwat(@watlablog)ã§ãã ããã§ã¯xpathãç°¡åã«åå¾ããGoogle Chromeã®æ¡å¼µæ©è½ã«ã¤ãã¦ãã¤ã³ã¹ãã¼ã«æ¹æ³ã¨ç°¡åãªä½¿ãæ¹ã¾ã§ãç¿å¾ãã¾ãï¼ xpathã使ãã¨ä½ãã§ããï¼ããã¾ã§ã®ãããã ãPython/Seleniumã§ä¾¿å©ãªxpathæ¤ç´¢ãããæ¹æ³ï¼ãã§ã¯ãPythonã¨ããããã°ã©ãã³ã°è¨èªã§ãSeleniumã¨ããããã±ã¼ã¸ã使ã£ãWebã¹ã¯ã¬ã¤ãã³ã°ã®åºç¤ãå¦ã³ã¾ããã xpathã¨ãããã±ã¼ã·ã§ã³ãã¹ã使ããã¨ã§ãç°¡åã«Webãµã¤ãããç®çã®æ å ±ãåå¾ãããã¨
ç»åã¯ã¤ã¡ã¼ã¸ã§ã ç¾å¨æ®åãã¦ããåç¨å ä¼éã·ã¹ãã ã®12åã«ä¼éé度ãé«éå NTTã¯ãä¸çæ大容éã¨ãªã1æ³¢é·ããã1.2ãã©ããã/ç§ã®å ä¼éãå®ç¾ãããã¸ã¿ã«ã³ãã¼ã¬ã³ãä¿¡å·å¦çåè·¯ããã³å ããã¤ã¹ãéçºããã¨çºè¡¨ããã è¿å¹´ã®æ åãã¼ã¿ã®æµéæ¡å¤§ãã¯ã©ã¦ãæè¡ã®é²å±ã«å ãã5Gãµã¼ãã¹ãªã©æ°ããæ å ±éä¿¡ãµã¼ãã¹ã®æ®åãããã«ã¯ãªã¢ã¼ãã¯ã¼ã¯ã®æ¥éãªæ®åã«ä¼´ããæ å ±éä¿¡ãã©ããã¯ã¯å¢å¤§ãã¦ãããä»å¾ãå¢å¤§ãç¶ãããã¨ãäºæ³ãããã ãã®ãããªç¶æ³ã«å¯¾å¿ããããã«ã¯ãåºå¹¹ç³»ã®å éä¿¡ãããã¯ã¼ã¯ã«ããã¦ã¯ãåä½ããããããã®ä¼éã«å¿ è¦ã¨ãªãæ¶è²»é»åã¨ã³ã¹ããããããã10å¹´ã§1/10ç¨åº¦ã®ãã¼ã¹ã§ä½æ¸ãããã¨ãæ±ãããã¦ããã ããããªãããããã¾ã§ã®æè¡ã§ã¯ããããªã大容éåã«ä¼´ãéä¿¡ç¨ããã¤ã¹ã®æ¶è²»é»åå¢å¤§ããå¤§å¹ ã«åæ¸ãããã¨ãå°é£ã ã£ããããã§NTTã¯ãæ¢è¨ã®å ä¼éã·ã¹ãã 容
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã