â»3種é¡ã®FPGAãã¼ãï¼Digilent社ã®ArtyãBasys3ãZyboï¼ç¨ã®ãã¼ã¿ãå«ã¿ã¾ãã
This chapter presents recent papers for using FPGAs (Field Programmable Gate Arrays) for Deep Learning. FPGAs can roughly be seen as a Software-configurable Hardware, i.e you in some cases get close to dedicated hardware speed (although typically at lower clock frequency than chips, but typically with strong on-FPGA parallelism), this can be a potential good fit for e.g. Convolutional Neural Netwo
ã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ãFPGAï¼field-programmable gate arrayï¼ã使ããã¼ãã«ãããã«ä¸ãã£ã¦ãã¦ãããã¯ã©ã¦ããµã¼ãã¹ã§FPGAãæ´»ç¨ã§ããããPythonã§è¨è¿°ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãFPGAã«é«ä½åæã§ããç 究ææãåºã¦ããããã¦ããã®ã ã ã½ããã¦ã§ã¢éçºè ã®ç«å ´ã§FPGAã«åãçµãã¤ãã³ããFPGAã¨ã¯ã¹ããªã¼ã ã»ã³ã³ãã¥ã¼ãã£ã³ã°ãã主宰ããä½è¤ä¸æ²æ°ãFPGAã®é«ä½åæã«ãããã£ã¼ãã©ã¼ãã³ã°ã«ã¤ãã¦ç 究ãã¦ããæ±äº¬å·¥æ¥å¤§å¦ã®ä¸ååè²´æ°ï¼ä¸åç 究室ï¼ãããã¦FPGAãã³ãã¼ã§ããã¶ã¤ãªã³ã¯ã¹ã®ç¥ä¿ç´å¼æ°ããæ¥æ¿ã«å¸¸èãå¤ããã¤ã¤ããFPGAã®ååãèªãåã£ãã æ¬ç¨¿ã§ã¯åº§è«ä¼ã®ä¸ãããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã«FPGAãé«ä½åæãæ±ããããç¾ç¶ãããã¦ãä»å¾ã©ã®ãããªãã¼ã«ã使ãã¹ãããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ãFPGAã«åãçµãéã®èª²é¡ãªã©ã«ã¤
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}