Layer activation functions Usage of activations Activations can either be used through an Activation layer, or through the activation argument supported by all forward layers:

ãªããã£ãã¤ã¶ï¼æé©åã¢ã«ã´ãªãºã ï¼ã®å©ç¨æ¹æ³ ãªããã£ãã¤ã¶ï¼æé©åã¢ã«ã´ãªãºã ï¼ã¯ã¢ãã«ãã³ã³ãã¤ã«ããéã«å¿ è¦ã¨ãªããã©ã¡ã¼ã¿ã®1ã¤ã§ã: from keras import optimizers model = Sequential() model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,))) model.add(Activation('tanh')) model.add(Activation('softmax')) sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer=sgd) ä¸è¨ã®ä¾ã®ããã«ï¼ãªããã£ãã¤ã¶ã®
ã¯ããã« Keras ã¢ãã«ã¯ä»¥ä¸ã®è¤æ°ã®ã³ã³ãã¼ãã³ãã§æ§æããã¦ãã¾ãã ã¢ã¼ããã¯ãã£ã¼/æ§æï¼ã¢ãã«ã«å«ã¾ããã¬ã¤ã¤ã¼ã¨ãããã®æ¥ç¶æ¹æ³ãæå®ããï¼ éã¿å¤ã®ã»ããï¼ãã¢ãã«ã®ç¶æ ãï¼ ãªããã£ãã¤ã¶ï¼ã¢ãã«ã®ã³ã³ãã¤ã«ã§å®ç¾©ããï¼ æ失ã¨ã¡ããªãã¯ã®ã»ããï¼ã¢ãã«ã®ã³ã³ãã¤ã«ã§å®ç¾©ããããadd_loss()ã¾ãã¯add_metric()ãå¼ã³åºãã¦å®ç¾©ããï¼ Keras API ã使ç¨ããã¨ãããããä¸åº¦ã«ãã£ã¹ã¯ã«ä¿åããããä¸é¨ã®ã¿ãé¸æãã¦ä¿åã§ãã¾ãã ãã¹ã¦ã TensorFlow SavedModel å½¢å¼ï¼ã¾ãã¯å¤ã Keras H5 å½¢å¼ï¼ã§ï¼ã¤ã®ã¢ã¼ã«ã¤ãã«ä¿åãããã¯æ¨æºçãªæ¹æ³ã§ãã ã¢ã¼ããã¯ãã£/æ§æã®ã¿ãï¼é常ãJSON ãã¡ã¤ã«ã¨ãã¦ï¼ä¿åã éã¿å¤ã®ã¿ãä¿åãï¼é常ãã¢ãã«ã®ãã¬ã¼ãã³ã°æã«ä½¿ç¨ï¼ã ã§ã¯ã次ã«ãããã®ãªãã·ã§ã³ã®ç¨éã¨æ©è½ããã
ãªãã¼ã¿ã§ãããã¤ãã¿ã¼ã§äººå·¥ç¥è½ã®ãã¨ãä»åªä½ã§æ¸ãã¦ããè¨äºãªã© ãç´¹ä»ãã¦ãã¾ãã®ã§ã人工ç¥è½ã®ãã¨ããã£ã¨ç¥ãããæ¹ãªã©ã¯æ°è»½ã«@omiita_atiimoããã©ãã¼ãã¦ãã ããï¼ ã決å®çãã¹ã¼ãã¼ããããããæé©åã¢ã«ã´ãªãºã 深層å¦ç¿ãç¥ãã«ããã£ã¦ãæé©åã¢ã«ã´ãªãºã (Optimizer)ã®ç解ã¯é¿ãã¦éãã¾ããã ãã æé©åã¢ã«ã´ãªãºã ãç解ãããã¨ããã¨æ°å¼ãåºã¦æ¥ã¦ãããå¾é éä¸æ³ããã¢ã¼ã¡ã³ã¿ã ããAdamããã種é¡ãå¤ãããè¤éã«è¦ãã¦ãã¾ãã¾ãã å®ã¯ãããããä½ãããã®ã«ã¯ãã£ããã¨ããæµããããããããç解ããã° ç°¡åã«æé©åã¢ã«ã´ãªãºã ãç解ãããã¨ãã§ãã¾ã ã ããã§ã¯ããããã®æé©åã¢ã«ã´ãªãºã ã¨æ失é¢æ°ã®æå³ããå ¥ããææ¥éä¸æ³ããæé©åã¢ã«ã´ãªãºã ã®å¤§å®çªã®Adamããã¦äºéå¾®åã®ãã¥ã¼ãã³æ³ã¾ã§é ã追ã£ã¦ å³ããµãã ãã«ä½¿ããªããä¸å¯§ã«è§£èª¬ ã
Callbacks API A callback is an object that can perform actions at various stages of training (e.g. at the start or end of an epoch, before or after a single batch, etc). You can use callbacks to: Write TensorBoard logs after every batch of training to monitor your metrics Periodically save your model to disk Do early stopping Get a view on internal states and statistics of a model during training
ã³ã¼ã«ããã¯ã®ä½¿ãæ¹ ã³ã¼ã«ããã¯ã¯è¨ç·´ä¸ã§é©ç¨ãããé¢æ°éåã§ãï¼è¨ç·´ä¸ã«ã¢ãã«å é¨ã®ç¶æ ã¨çµ±è¨éãå¯è¦åããéã«ï¼ã³ã¼ã«ããã¯ã使ãã¾ãï¼Sequentialã¨Modelã¯ã©ã¹ã®.fit()ã¡ã½ããã«ï¼ãã¼ã¯ã¼ãå¼æ°callbacksã¨ãã¦ï¼ã³ã¼ã«ããã¯ã®ãªã¹ãã渡ããã¨ãã§ãã¾ãï¼ã³ã¼ã«ããã¯ã«é¢é£ããã¡ã½ããã¯ï¼è¨ç·´ã®å段éã§å¼ã³åºããã¾ãï¼ [source] Callback keras.callbacks.Callback() ãã®æ½è±¡åºåºã¯ã©ã¹ã¯æ°ããã³ã¼ã«ããã¯ãæ§ç¯ããããã«ä½¿ç¨ããã¾ãï¼ ãããã㣠params: è¾æ¸ï¼è¨ç·´ã®ãã©ã¡ã¼ã¿ï¼ä¾: åé·æ§ï¼ããããµã¤ãºï¼ã¨ããã¯æ°...ï¼ï¼ model: keras.models.Modelã®ã¤ã³ã¹ã¿ã³ã¹ï¼å¦ç¿ãããã¢ãã«ã¸ã®åç §ï¼ ã³ã¼ã«ããã¯é¢æ°ãå¼æ°ã¨ãã¦ã¨ãè¾æ¸ã®logsã¯ï¼ç¾å¨ã®ãããæ°ãã¨ããã¯æ°ã«é¢é£ãããã¼
[source] Dense keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None) é常ã®å ¨çµåãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¬ã¤ã¤ã¼ï¼ Denseãå®è¡ããæä½ï¼output = activation(dot(input, kernel) + bias)ãã ãï¼activationã¯activationå¼æ°ã¨ãã¦æ¸¡ãããè¦ç´ åä½ã®æ´»æ§åé¢æ°ã§ï¼kernelã¯ã¬ã¤ã¤ã¼ã«ãã£ã¦
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}