ããµãã @formula1_99 ããã£ã¶ã¼åºåã 3æä¸ã«æ¬å¦å¤§å¦çåã«ã¦ï¼ã¨ããä¸ä¾¿çã°ããºãçºå£²ãããäºå®ã§ãï¼è©³ç´°ã«ã¤ãã¦ã¯ã¾ã æããã¾ããã⦠ä¹ããæå¾ ï¼ããµï¼ 2013-01-22 23:46:58
ãªãã£ã¹ã®ç§»è»¢ãå¼ã£è¶ãã¯ãä¼æ¥ã«ã¨ã£ã¦ã¯ä¸å¤§ã¤ãã³ãã§ãã æ°ãããªãã£ã¹ã§ã®å¿æ©ä¸è»¢ã®ã¹ã¿ã¼ãã¯ã¨ã¦ãã¯ã¯ã¯ã¯ãã¾ãããã ãã ã移転ä½æ¥ãã®ãã®ã¯ä¸æä¸å¤ã§ã§ãããã®ã§ã¯ããã¾ããã æ§ãªãã£ã¹ããæ°ãªãã£ã¹ã¸ç§»åãããã®æã ããæ°ã«ãããã°ããã¨ãããã¨ã§ãããã¾ããã ããããå ¥å± ãã移転å ã®æ°ãªãã£ã¹ã¨ãéå»ããç¾å¨ã®ãªãã£ã¹ã«é¢ãã¦ããããããããªããã°ãªããªããã¨ãããããããã®ã§ãã å°ãªãã¨ãã移転ããåå¹´ã»ã©åããæºåãå¿ è¦ã§ãè¨ç»æ§ããã£ã¦é²ãã¦ãããªããã°ãªãã¾ããã å½ç¶ããªãã£ã¹ã®ç§»è»¢ã«ã¯è²»ç¨ããããã¾ãã æ§ãªãã£ã¹ã«é¢ãã¦ããæ°ãªãã£ã¹ã«é¢ãã¦ããããããè²»ç¨ããããã®ã§ãã 移転æºåã«å¤§ããªæ¼ããããã¨ããã©ãã«ãçããããä¼ç¤¾ã®æ失ã大ãããªã£ã¦ãã¾ã£ãããã¨ãã£ããã¨ãèãããã¾ãã ãã£ããæ°ãããªãã£ã¹ã§æ°ããªã¹ã¿ã¼ããåããã¨ãã¦ããæã«ããã©
é·éçä¸ã®é«æ ¡åé¨çãæ²é³´ãä¸ãã3æ7æ¥ã«è¡ãªãããå ¬ç«é«æ ¡å ¥è©¦ã®æ°å¦ã®è¨åãç°æ§ã«é£ãããèªä¿¡ããã£ãããªãããåé¨çã試é¨ä¼å ´ãå»ä¸ã§æ³£ãåºãã±ã¼ã¹ãç¶åºããã®ã ã é·éçå ã®ä¸é«çåãå¦ç¿å¡¾ã®æ°å¦è¬å¸«ãããããã ãä¸å¦3å¹´çã«ã¯é£ããããï¼ãçå ã§ä½¿ç¨ããã¦ãããã¹ã¦ã®æ°å¦æç§æ¸ããã§ãã¯ãããããããªããã©ãå°ãªãã¨ãç§ãåãæã£ã¦ããä¸3çã®æç§æ¸ã«ã¯ãããªé£åãã©ãã«ãè¼ã£ã¦ãã¾ããããããã§ã¯æ°å¦ã§ç¹æ°ã稼ãã¤ããã§ããçå¾ã«ã¨ã£ã¦ããã¾ãã«ä¸å©ã§ããå ¬ç«é«æ ¡ã®å ¥è©¦ã¯ããã¾ã§ããçå¾ãæãã£ãç¯å²ã§è§£ããåé¡ãåºãã¹ããããªãã§ããï¼ã èªä¿¡åªå¤±ã®ãã¾ãããã®å¾ã®ãã¹ããæãã¦ãã¾ãã±ã¼ã¹ããã£ãã¨ããã ãå½æ¥ã¯æ°å¦ã®å¾ã«ç¤¾ä¼ãçç§ãè±èªã®ãã¹ããäºå®ããã¦ãã¾ãããã¨ãããããã¾ãã«ãæ°å¦ã®ãããæªãããããããã¯ãåæ ¼ã¯æããªãã¨ããã®å¾ã®ãã¹ãã解ãæ°åããã£ãã
palindromic prime A palindromic prime is simply a prime which is a palindrome. Obviously this depends on the base in which the number is written (for example, Mersenne primes are palindromic base 2). When no radix is indicated, we assume the radix is 10. In base ten a palindrome with an even number of digits is divisible by 11. So 11 is the only palindromic prime with an even number of digits.
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}