Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametriz
æ¬è¨äºã¯ãå½ç¤¾ãªã¦ã³ãã¡ãã£ã¢ãDoorsãã«ç§»è»¢ãã¾ããã ç´5ç§å¾ã«èªåçã«ãªãã¤ã¬ã¯ããã¾ãã çºå±ãç¶ãããèªç¶è¨èªå¦çãæè¡ããã®ä¸ã§ãå¹ åºã使ç¨ããã深層å¦ç¿ã¢ãã«Transformerã¯ãèªç¶è¨èªå¦ç以å¤ã®é³æ¥½çæãç©ä½æ¤åºãªã©ã®é åã§ãé©ç¨ã§ãã¾ããæ¬ããã°ã§ã¯ã Transformerãæç³»åãã¼ã¿ã«é©ç¨ããæ¹æ³ããç´¹ä»ãã¾ãã ããã«ã¡ã¯ãAIã½ãªã¥ã¼ã·ã§ã³ãµã¼ãã¹é¨ã®äºåºã¨ç³ãã¾ãã ãã®è¨äºã§ã¯ãç¹ã«èªç¶è¨èªå¦çåéã§å¹ åºã使ç¨ããã深層å¦ç¿ã¢ãã«Transformerãæç³»åãã¼ã¿ã¸é©ç¨ããæ¹æ³ã«é¢ãã¦ãç´¹ä»ãã¾ãã 以åã®è¨äºã§ã¯ãTransformerã®æ§é ãç¹å¾´ãªã©ã«ã¤ãã¦ãèªç¶è¨èªå¦çåéã®æ©æ¢°ç¿»è¨³ãä¾ã¨ãã¦ãç´¹ä»ãã¦ããã¾ããã¯ããã«ããã¡ãã®è¨äºããä¸èªãã¦ããã ããã¨ã§ãããæ¬è¨äºã§ãç´¹ä»ããå 容ã«å¯¾ããç解ãæ·±ã¾ããã¨æãã¾ãã Transform
ããã«ã¡ã¯ï¼ãç»åã·ã¹ãã ã°ã«ã¼ãã§æ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ããã£ã¦ããå°å³¶ã§ãã ãã®è¨äºã§ã¯ãä»ããããªãZero-shot Learningãã¨ãVision & Languageãã«é¢ããææ°æ å ±ããCLIPã¨ããç 究ãèµ·ç¹ã¨ãã¦ç¶²ç¾ çã«ãµã¼ãã¤ããã¦ããã¾ãããã®ããã«è«æ1000æ¬ã«ç®ãéãã70æ¬ç¨åº¦ãè¨äºã«ãã¾ããã Zero-shotãVision & Languageã¯ãStable Diffusionã«ä»£è¡¨ãããç»åçæAIã¨ãå¯æ¥ã«é¢é£ãã¦ããæè¡ã§ãããã®è¨äºãéãã¦ãVision & Languageã®å¥¥æ·±ãä¸çãä½æã§ããã§ãããã 注æäºé ãã®è¨äºã¯é常ã«é·ããããå ¨é¨èªãã®ã«1æé以ä¸ãããå¯è½æ§ãããã®ã§ãä¼æ©ãåããªãããã¾ãã¯å¿ è¦ãªé¨åã ãèªãã§ãã ãããåã»ã¯ã·ã§ã³ãåå¥ã«èªãã§ãåé¡ããã¾ããã ã¾ããæç« ä¸ã®ç»åã¯ãç¹å¥ãªè¨è¼ããªãéããå¼ç¨å ã®è«
Stability AI ã¯ãé³æ¥½ã¨ãµã¦ã³ãçæã®ããã®åã®AIã¢ãã«ã¨ãªã Stable Audio ãçºè¡¨ãã¾ããã Stable Audio ã¯ãææ°ã®çæ AI æè¡ãé§ä½¿ãã使ãããã Web ã¤ã³ã¿ã¼ãã§ã¼ã¹ãä»ãã¦ãããé«éã§é«å質ãªé³æ¥½ã¨ãµã¦ã³ãã¨ãã§ã¯ããæä¾ããä¸çåã®è£½åã§ããStability AI ã¯ã45ç§ã¾ã§ã®ãã©ãã¯ãçæãã¦ãã¦ã³ãã¼ãã§ãã Stable Audio ã®åºæ¬ç¡æçã¨ãåç¨ããã¸ã§ã¯ãç¨ã«ãã¦ã³ãã¼ãå¯è½ãª90ç§ã®ãã©ãã¯ãæä¾ãããProããµãã¹ã¯ãªãã·ã§ã³ãæä¾ãã¦ãã¾ãã StabilityAI ã® CEO ã§ãã Emad Mostaque ã¯ããå¯ä¸ã®ç¬ç«ããããªã¼ãã³ã§ãã«ãã¢ã¼ãã«ãªçæ AI ã®ä¼ç¤¾ã¨ãã¦ãé³æ¥½ã¯ãªã¨ã¤ã¿ã¼ããµãã¼ããã製åãéçºããããã«ç§ãã¡ã®å°éç¥èãæ´»ç¨ã§ãããã¨ãå¬ããæãã¾ããç§ãã¡ã®é¡ãã¯ãSt
2023å¹´ã«æ±äº¬é½ç«å¤§å¦ã§é常å¤è¬å¸«ã¨ãã¦ãå¦é¨3å¹´çåãã«ãæ©æ¢°å¦ç¿ãæ¨è¦ã·ã¹ãã ãé¡æã«ããã¨ãããã¼ãã§è¬ç¾©ããã¾ããã 90åÃ3ã³ãÃ2æ¥éã®è¨6ã³ãã®éä¸è¬ç¾©ã§ãStreamlitã§æ ç»ã®ã¬ã³ã¡ã³ãã¢ããªãå®éã«ä½ã£ã¦ã¿ããªã©ã®æ¼ç¿ãå«ãããã®ã§ãã æ¨å¹´ã大å¦é¢çåãã«åæ§ã®è¬ç¾©ã3ã³ãåãã¦ããã®ã§ããããæ¡å¼µããå½¢ã§ãæè¿è©±é¡ã®çæAIã®è©±ã1ã³ãåç¨æãã¾ãããï¼æ¨å¹´ã®ææ¥è³æã¯ãã¡ãã«ããã¾ããï¼ æ¨è¦ã·ã¹ãã ãçæAIÃæ¨è¦ã·ã¹ãã ã«ã¤ãã¦èå³ããæ¹ã®ãåèã«ãªãã¾ãããã 1æ¥ç®(90åÃ3ã³ã) æ¨è¦ã·ã¹ãã ã®æ¦è¦ æ¨è¦ã·ã¹ãã -åæ¨è¦ã¢ã«ã´ãªãºã æ¨è¦ã·ã¹ãã ã®å¨è¾ºæè¡(è©ä¾¡ææ¨ã«ã¤ãã¦)
2023年度統è¨é¢é£å¦ä¼é£å大ä¼ãã¥ã¼ããªã¢ã«ã»ãã·ã§ã³ãè¨èªã¢ãã«ã¨èªç¶è¨èªå¦çã®ããã³ãã£ã¢
ãð© ä»äºã®ç¸è«ã¯ãã¡ã ð©ã ãä»äºã®ç¸è«ã®ããæ¹ã¯ãä¸è¨ã®ãã©ã¼ã ãããæ°è»½ã«ãç¸è«ãã ããã https://forms.gle/G5g1SJ7BBZw7oXYA7 ãããã¡ã¼ã«ã§ã®åãåããã®æ¹ããããããã°ãä¸è¨ã®ã¡ã¼ã«ã¢ãã¬ã¹ã¸ãé£çµ¡ãã ããã info*galirage.comï¼*ã@ã«å¤ãã¦ãéä»ãã ããï¼ ð ãçæAIã®ç¤¾å ã¬ã¤ãã©ã¤ã³ãPDFããå ¬å¼LINEãã§é å¸ä¸ ð ãLINEã§ç¸è«ãããæ¹ããããåãåãããæ¤è¨ä¸ã®æ¹ãã¯ãå ¬å¼LINEã§ãé£çµ¡ããã ãã¾ãã¨å¹¸ãã§ãã ï¼æééå®ã§é ä¿¡ä¸ãªããããèå³ããæ¹ã¯ãä»ã®ãã¡ã«åãåãããã ãããã¨æãã¾ã^^ï¼ https://lin.ee/3zRuqKe ãã¾ãâ ï¼çæAIã¢ã«ããã¼ ããå°éçãªãçæAIã¨ã³ã¸ãã¢äººæããç®æãã¾ãããï¼ ãããªæ¹ã ã«åãã¦ããçæAIã¢ã«ããã¼ï¼æ§ï¼çæAIã¨ã³ã¸ãã¢
cvpaper.challenge ã® ã¡ã¿ãµã¼ãã¤çºè¡¨ã¹ã©ã¤ãã§ãã cvpaper.challengeã¯ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³åéã®ä»ãæ ãããã¬ã³ããåµãåºãææ¦ã§ããè«æãµããªä½æã»ã¢ã¤ãã£ã¢èæ¡ã»è°è«ã»å®è£ ã»è«ææ稿ã«åãçµã¿ãå¡ããç¥èãå ±æãã¾ãã http://xpaperchallenge.org/cv/ Read less
ã²ã¼ã AIãã¡ã¿ãã¼ã¹ãã¹ãã¼ãã·ãã£ã«ã¤ãã¦è§£èª¬ãã¾ãã
[NAFNet] æ©æ¢°å¦ç¿ã§ç»åã®ãã¤ãºé¤å»ããã©ã¼é¤å»ãè¶ è§£å [Denoise, Deblur, Super Resolution] 2022å¹´5æ7æ¥åææ¥ Artificial Intelligence NAFNet æ¦è¦ è¿å¹´ãç»å復å (Image Resolution)æè¡ã¯æ§ã ãªé²æ©ãã¿ããã¦ãã¾ãããã·ã¹ãã ã®è¤éããå¢å ãã¦ãã¾ãã NAFNetã¯ãSOTAãéæãã¤ã¤ãè¨ç®å¹çã®é«ãåç´ãªãã¼ã¹ã©ã¤ã³ã§æ§æãããç»å復å æè¡ã§ãã NAFNetã¯ãSigmoid, ReLU, GELU, Softmaxãªã©ã®éç·å½¢æ´»æ§åé¢æ°ã使ç¨ãããä¹ç®ã§ç½®ãæããããåé¤ãããã¨ã§ãã¼ã¹ã©ã¤ã³ãåç´åãã¦ãã¾ãã ãã®ãããéç·å½¢æ´»æ§åé¢æ°ããªã¼ãªãããã¯ã¼ã¯ã§ãããã¨ãããNonlinear Activation Free Networkã§NAFNetã¨å¼ã°ãã¦ãã¾ãã NAFN
ã¯ããã«ä¸è¬ç©ä½èªèã¯ããæ°å¹´ã§å¤§ããªé²åãéãã¾ããããã®ä¸ã§ãå®ç¨çã«ä½¿ãããã&ãã使ããã¦ããï¼æ°ãããï¼ã®ã¯YOLO v3ã ã¨æãã¾ããããã¯ãããç¨åº¦ã®äºæ¸¬ç²¾åº¦ãæã¡ãªããæ¨è«é度ãã¯ããã¨ããã¢ãã«ã«ãªã£ã¦ããããã§ãã ä»å説æããã®ã¯ãã®YOLOv3ã«å¯¾ãã¦ãäºæ¸¬ç²¾åº¦ãæ¨è«é度ãä¸åããããªã¢ãã«ã®M2Detã§ããäºæ¸¬ç²¾åº¦ã¨æ¨è«é度ã¯ãã¬ã¼ããªãã¯ããã¾ãããã©ã¡ããã¨ã£ã¦ããä¸è¨ã®å³ã®ããã«ä»ã®ã¢ãã«ã«åªä½æ§ããããã¨ãåããã¾ãã M2Detã¯AAAI2019ã«æ¡é²ãããè«æã®ã¢ãã«ã§ãããã使ãããæ©ä¼ãå¢ããã®ã§ã¯ãªããã¨æãã¾ããYOLOv3ã¯èè å®è£ ãæ§ã ãªãã¬ã¼ã ã¯ã¼ã¯ã®å®è£ ãããã¦å¦ç¿æ¸ã¿ã®ã¢ãã«ã¾ã§å ¬éããã¦ãã¦é常ã«ä½¿ãããããªã£ã¦ãã¾ãããM2Detãèè å®è£ ãå¦éæ¸ã¿ã¢ãã«ã®å ¬éãäºå®ããã¦ãã¦ãå ¬éãããã°å©ç¨ãå¢ããã¨æãã¾ããå ¬éäºå®ã®ã¬ãã¸
æ¬ããã°ã©ã ã®æ大ã®ç¹å¾´ã®ä¸ã¤ã¯ãå ¨ã¦ã®ãããã¯ã«ã¤ãã¦ãæ¼ç¿ãä¸å¿ã«æ§æããã¦ããç¹ã§ããå®éã«æãåãããªããç解ãé²ãããã¨ã§ãå¹çããå¦ç¿ãããã¨ãã§ãã¾ãã å®éã«ã¢ãã«ãå¦ç¿ãããªããæè¡ãç¿å¾ããæ¬æ ¼çãªæ¼ç¿å 容ã¨ãªã£ã¦ãã¾ããDeep Learningã¯ãã¢ãã«ãå®éã«å¦ç¿ããæ§åã観測ãããã©ã¡ã¼ã¿ã調æ´ãããã¨ã§ã¢ããªã±ã¼ã·ã§ã³ã«å¿ããããã©ã¼ãã³ã¹æ大åãè¡ããã¨ãé常ã«éè¦ãªæè¡ã§ããããã®ä¸é£ã®æµããå ¨ã¦ã®æ¼ç¿ã§çµé¨ããªããéè¦ãªè¦ç´ ã身ã«ã¤ãããã¨ãå¯è½ã§ãã
ã¼ãã§çºè¡¨ããè³æ ãã£ã¼ãã©ã¼ãã³ã°ã®ä¸ã®ä¸ã¤ã®ã¢ããã¼ãã§ããç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã«ã¤ãã¦ã®èª¬æã§ã åè 岡谷 è²´ä¹ï¼2013ï¼ãç»åèªèã®ããã®æ·±å±¤å¦ç¿ãã人工ç¥è½å¦ä¼èªã28å·»6å·ï¼2013å¹´11æå·ï¼962ppRead less
2. 2 ï®Eiji-K (Eiji-Kb) ï® 2013 ã¼ãã³ã³å¤å ï® 2013ã15 大å¦é¢ï¼ä¿®å£«ï¼ åç»èªèï¼ã¹ãã¼ãï¼ã®ç 究 ï® ç¾å¨ ãã£ã¼ãã©ã¼ãã³ã°åå¼·ä¸ èªå·±ç´¹ä» 3. 3 ï® Deep Colorization Zezhou Cheng Qingxiong Yang Bin Sheng http://www.cs.cityu.edu.hk/~qiyang/publications/iccv-15.pdf ï® Automatic Colorization Ryan Dahl http://tinyclouds.org/colorize/ ï® Colorful Image Colorization Richard Zhang Phillip Isola Alexei A. Efros http://richzhang.github.io/colorization/ ï® ã
3. æ©æ¢°å¦ç¿ã®ããã®è¡åã®å¾®å x =    x1 ... xk   , f(x) ã¯ã¹ã«ã©ã¼, F(x) =    f1(x) ... fm(x)   , a =    a1 ... ak    ã¨ãã. âF (x) âx =     âf1(x) âx1 · · · âfm(x) âx1 ... ... ... âf1(x) âxk · · · âfm(x) âxk    , âxT a âx = âaT x âx = a åå¾®åæ¼ç®åã§F(x)ãä½ç¨ãã¦ããã¨è§£é âTr(AB) âaij = bji â âTr(AB) âA = BT A,Bãè¡åã¨ãã. åæé¢æ°ã®å¾®å ãç´æéã âf(g(x)) âx = âg(x) âx âf(g(x)) âg(x) ä»é²ï¼ï¼æ°å¦ã®å¾©ç¿http://www.r.dl.itc.u-tok
家ã®ãã¥ã¦ãªãæ¯ãã¦ãã¾ã£ã¦ããç¥ãã¾ããã ããç¨åº¦ãã©ã¡ã¼ã¿ãã¯ã£ãããã㰠大è¦æ¨¡ãªFPGAã§å¦çã§ããããããã¾ããã 12æ3æ¥ã®å¤§å£ããã¡ã¼ã«ã¼ãºãã§ã¢ã§ãã¸ã¿ã«ãã£ã«ã¿ã®äººã¨ä¼ããã話ãã¦ã¿ã¾ãã è¿ä¿¡åé¤
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}