ITæè¡ãä¸å¿ã«ãæ®ããã«å½¹ç«ã¤æ å ±ããã¯ã©ã·ãã¯é³æ¥½ã®è§£èª¬ã¾ã§æ°è»½ã«æ å ±çºä¿¡ãã¦ãã¾ãã WEBãµã¤ãã¯http://toremoro21.world.coocan.jp/ãTwitterã¯@toremoro21ã§ãã ä»å¹´ã¯1æããP2Pæ¥çã«ã¨ã£ã¦ããã°ãã¥ã¼ã¹ã§ãï¼ ãã®åã«P2Pã«ã¤ãã¦ã¡ãã£ã¨ãã話ãã P2Pã¨ããã°ãæã¯Gnutellaã®ãããªUnstructure-P2Pã½ããããããã¾ããã§ããããæè¿ã§ã¯ï¼¤ï¼¨ï¼´ã¨å¼ã°ãã Structure-P2Pã®ç 究ãæµè¡ãã¦ãã¾ããç§ã®ï¼¢ï½ï½ï½ãHPã§ãï¼³ï½ï½ï½ï½ï½ï½ï½ï½ -P2Pã®ãããã¯ãçã ã«åãä¸ãã¦ãã¾ãã ã§ã¯UnStructure-P2Pã¨ï¼³ï½ï½ï½ï½ï½ï½ï½ï½ -P2Pã®éãã¨ã¯ï¼ã¨ããã¨ãUnStructure-P2Pã¯æ§é ãåç´åãã¦ããããã½ãããä½ããããåé¢ãæå¾ ãã¦ããæ¤ç´¢çµæã¯ãã¾ã帰ã£ã¦ããªãçã®ãã¡ãª
SkypeWebã®ãã¼ã¿ãå§ã¾ã£ã¦ãã¾ããããã使ãã¨ãWebãªã©ã«ã¹ã«ã¤ãï¼Skypeï¼ã®ã¹ãã¼ã¿ã¹ã表示ãããã¨ãåºæ¥ãããã§ãã åå ããã«ã¯ç»é²ãå¿ è¦ã«ãªãã¾ããä»ã¾ã§ã®Jyveçã®ãµã¼ãã¹ãããã¾ãããããã¡ãã¯æ¬å®¶ã®ãµã¼ãã¹ã¨ãªãã¾ãã Skype Developer Zone Blog: SkypeWeb Beta is here!
ã¨ããå人ã«æãã¦ãçµã£ãTinyMCEã¨ãã WYSYWIGWYSIWYG 㪠HTML ã¨ãã£ã¿ã©ã¤ãã©ãªããã°ããã JavaScript ã§è¨è¿°ããã LGPL ã§ãªã¼ãã³ã½ã¼ã¹ãª ã¯ãã¹ãã©ãããã©ã¼ã ã® å¤è¨èªå¯¾å¿ããã¦ã¦ ç°¡åã«ä½¿ãã ã©ã¤ãã©ãªãä¼¼ããããªãã®ã« htmlArea ã¨ããã®ããã£ã¦çµæ§æã«è©±é¡ã«ãªã£ã¦ããã§ãããå°å ¥ãããã©ãããã£ãããã©ã¦ã¶ã«ãã£ã¦ã¯ã¾ã¨ãã«åããªãã£ããã¨ãè²ã é¢åãªæãããã¾ãããTinyMCE ã®æ¹ã¯ã¨è¨ãã¾ãã¨ãInstallation instructions ã«ãããã¨ããã <html> <head> <title>TinyMCE Test</title> <script type="text/javascript" src="/js/tiny_mce/tiny_mce.js"></script> <script type=
æè¿é£¯ããããä½ãããã¦ä½ç½®æ å ±ã®å ¥åå½¢æ ãèãã¦ããã¨ããããã°äººãããããããã³ãããããã DOMScripting ãã¼ã¹ã®ã¤ã³ã¿ã¼ãã§ã¼ã¹ã 㨠ãªã³ããã³ãã§ã©ãã«ã§ãã¤ã³ã¸ã§ã¯ã·ã§ã³ã§ãã 対話å¼ã«ãããªã©ãªããåã§ãã URI ãã¼ã¹ã§ç®¡çã¨ãåºæ¥ãããç¥ããªã ã¨ãã£ãã¡ãªããããããããªæ°ããããåé¢, DOM Scripting ã«å¯¾å¿ãããã¶ã¤ããå¿ è¦ã«ãªã, ããã§ã製ä½ï¼ã¡ã³ãã®ã³ã¹ãã¯ä¸æããã microformat ã GPS, REST ãã¼ã¹ã®ãããã³ã«ã¨çµã¿åãããã¨æ´ã«å¨åãå¢ãã¯ãã ã çµæ§è¦è½ã¨ãã¦ããã ããããæ°ããæ¹æ³ã®è¦è½ã¨ãé²æ¢/çºè¦ãå©ããããã® web2.0 ãªã¤ã³ã¿ã¼ãã§ã¼ã¹/ã¢ããªã±ã¼ã·ã§ã³è¨è¨ã®ãã¶ã¤ã³ã¡ã½ãããããããèãã¦ã¿ã¦ãããé ããã
Google Labs has a new paper out, "Interpreting the Data: Parallel Analysis with Sawzall". Sawzall is a high level, parallel data processing scripting language built on top of MapReduce. The system allows Google to do distributed, fault tolerant processing of very large data sets. Here's an excerpt from Section 14 "Utility" of the paper:Although it has been deployed only for about 18 months, Sawzal
Interpreting the Data: Parallel Analysis with Sawzall Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan Abstract Very large data sets often have a flat but regular structure and span multiple disks and machines. Examples include telephone call records, network logs, and web document repositories. These large data sets are not amenable to study using traditional database techniques, if only
29ãèªèº«ã§èæ¡ãããThe DRIPã¡ã½ããããè¬æ¼ã§èãã常ã ãªãªã¸ãã«ã®ãââã¡ã½ãããã£ã¦ãããªããã¨æã£ã¦ããã®ã§ããªãªã¸ãã«ã®ããã¿ãã«ã¡ã½ããããèæ¡ãã¦ã¿ã¾ããã ãããã¬ãã£ããªãã¨ã¯æ¸ããªã ããããã®äººã«æ¥½ãããªã£ã¦ãããã«ã¯ãã§ããã ããã¬ãã£ããªãã¨ã¯æ¸ããªãããã¬ãã£ãã¹ãã¤ã©ã«ã§ã¯ãªãããã¸ãã£ãã¹ãã¤ã©ã«ã«ä¹ãã¾ãããããã£ã¨ããã°ãæ¸ããã¨ã楽ãããªãã¯ãã ãã¿ãã®ããæ¸ã ããã°ãç¶ããç§è¨£ã¯æ¥½ããã§æ¸ããã¨ãã¾ãã¯èªåã楽ãã¿ã¾ãããã楽ããã«ã¯ã©ããããè¯ããï¼ãèªåãèå³ãããã¨ã«ã¤ãã¦âæ°çºè¦âãæ¢ãã®ã§ãããç§ã¯ããæãããèªåã ã£ããããããããçºæ³ã®è»¢æã¯çã«ãªãã¾ããã ããããè¿ã æã«ã¯éå»ãæ¯ãè¿ãã¾ããããããã¯ã¢ã¯ã»ã¹è§£æã®ã話ãæ¸ãç¶ãããã¨ã大åã§ãããæã«ã¯ã¢ã¯ã»ã¹è§£æã§ããã°ã®ç¶æ ãææ¡ãã¾ããããã¢ã¯ã»ã¹æ°ãå¢ããã¨
ã¡ã³ããã³ã¹
ãç¥ãã
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}