æ¨çå°èª¬ã®ä½ãå«ãã£ã¦ãç»å ´äººç©ãèæ¯è¨å®ãä½ããä½ã¾ã§ãã説å¾åãã®ããã«ããã¨ããã ç¯äººã¯å®å ¨ç¯ç½ªãç®è«ããç¥è½ç¯ã§ãããç¥è½ã®ãã人éããã©ã¦ãã®ä¸ã¤ããªãã®ã«æ®ºäººãç¯ãããã¯ããªãâ¦â¦ã ãããã風ã«ãå ¨ã¦ãè¨ç®ã¥ãã§åãã¦ãã説å¾åã®ããä¸ç観ããããå«ãã ï¼è¿½è¨ï¼ ã¡ãªã¿ã«å¥½ããªã®ã¯èç¡ã¸ã®ä¾ç©ã¨ãã°ã©ã»ãã°ã©ã é»æ»é¤¨ã¯ååãã§ããããå«ããã¢ã³ããã¹ããªã ããã©ãããã£ã¦ããã§ã¯ãªãã¨æãã å®®é¨ã¿ãããå«ããããããå ¨ã¦ã®ãã£ã©ã¯ã¿ã¼ãä¸çã®ããã«åå¨ããä½åã®ä»£è¡¨æ ¼ã ï¼å追è¨ï¼ ãªããåéãããã¨ããã©ã俺ã¯ããã£ã©ã¯ã¿ã¼ãä½ããã¾ãã¦ãããã®ãå«ããªãã§ãã£ã¦ã ããããæå³ã§ã¯ç¤¾ä¼æ´¾ã®æ¹ããã£ã½ã©å«ããã ãã¨ãä»ã«ããããã£ã¦è¨ããããããããã¨ãéªé¦¬å°å½ã®ç§å¯ãã¨ãã¯å¥½ã ããããä½è ã«ã¯ã©ãã«ãã§ããªãå²æ¸ã¨ããé¡æã«ãããã¤ã¯ããã
When $x$ is discrete, KL divergence is $D_{KL}(P||Q)=\sum\limits_{x}P(x)\log \frac{P(x)}{Q(x)}$, when $x$ is continuous, $D_{KL}(P||Q)=\int\limits_{x}p(x)\log \frac{p(x)}{q(x)}dx$. However, when the space of the random variable $x$ is defined on mixed continuous and discrete space, what would be the KL divergence? For example, $x=(r,a)$, where $r$ is a continuous variable that follows Gaussian dis
ã令åãã«æ±ºã¾ã£ãæ°å å·ã®é¸å®ä½æ¥ã§ãæ¿åºã示ããï¼ã¤ã®åæ¡ã®ä¸ã«ãè±å¼ï¼ããããï¼ããã¾ããèªã¿æ¹ã¯æ確ã§ã¯ããã¾ããããåºè³ãããä¸åãããä¸ä¿ãã®ï¼æ¡ãå«ã¾ãã¦ãããã¨ãåããã¾ããã ããããä¸ãæ°å å·ã®é¸å®ä½æ¥ã§ãæ¿åºããåçã®ä»£è¡¨ãæèè ãããªããå å·ã«é¢ããæè«ä¼ããå ¨é£åä¼è°ã§ç¤ºããï¼ã¤ã®åæ¡ã®ä¸ã«â½ãè±å¼ããã¾ããèªã¿æ¹ã¯æ確ã§ã¯ããã¾ããããâ½ãåºè³ï¼ããããã¾ãã¯ããããï¼ããâ½ãä¸åï¼ã°ããªãã¾ãã¯ãã°ããï¼ããâ½ãä¸ä¿ï¼ã°ãã»ãã¾ãã¯ãã°ãã»ãï¼ãã®ãï¼æ¡ãå«ã¾ãã¦ãããã¨ãåããã¾ããã ã¾ãæ¿åºã¯ããããï¼ãæåããæ°å å·ã®åè£åãçµãè¾¼ãä½æ¥ãé²ããçºè¡¨ã®ï¼é±éã»ã©åã«ã¯åæ¡ã®æ°ãï¼ã¤ã«æ±ºãã¦ããã¨ãããã¨ã§ãã ããã«ï¼ã¤ã®åæ¡ã¯ãä¸æã®ç´ã«å ¸æ ã¨ã¨ãã«äºåé³é ã«ä¸¦ã¹ãå½¢ã§æè«ä¼ã®æèè ãªã©ã«ç¤ºãããå¤ãããã令åããæ¨ãæè¦ã«å ããåºå ¸ãæ¥æ¬ã®å¤å ¸ã«ãã
ãã¥ã¼ã¸ã¼ã©ã³ãåé¨ã®ã¯ã©ã¤ã¹ããã£ã¼ãã«ããã¤ã¹ã©ã æã®ç¤¼ææã»ã¢ã¹ã¯ã§éä¹±å°äºä»¶ãèµ·ãã49人ãæ»äº¡ãã¾ãããã¢ã¼ãã¼ã³é¦ç¸ã¯ãéæ¿ãªææ³ãæã£ã容çè ã«ããããæ»æã ã¨è¿°ã¹ãè¦å¯ã¯ï¼äººã殺人容çã§è¨´è¿½ããã»ãã«èº«æãææããï¼äººã®äºä»¶ã¸ã®é¢ä¸ã調ã¹ã¦ãã¾ãã æ¥æ¬æéã®15æ¥ååï¼æ40åããããã¥ã¼ã¸ã¼ã©ã³ãåé¨ã®ã¯ã©ã¤ã¹ããã£ã¼ãä¸å¿é¨ã«ããã¢ã¹ã¯ã§ãä½è ããéãä¹±å°ãã¾ããã è¦å¯ã«ããã¾ãã¨ããã®äºä»¶ã§ãä¸å¿é¨ã«ããããã¼ã«ã»ã¢ã¹ã¯ãã§41人ãããªã³ã¦ããã»ã¢ã¹ã¯ãã§ï¼äººãæ¬éå ã®ç é¢ã§ï¼äººã®åããã¦49人ãæ»äº¡ããããã50人ãç é¢ã§æå½ã¦ãåãã¦ããã¨ãããã¨ã§ãã è¦å¯ã¯ã身æãææããï¼äººã®ãã¡ã主ç¯æ ¼ã¨ã¿ãããï¼äººã¯28æ³ã®ç½äººã®ç·ã§ã殺人容çã§è¨´è¿½ããã»ããï¼äººã«ã¤ãã¦ã¯äºä»¶ã«ã©ã®ããã«é¢ä¸ããã®ãã詳ãã調ã¹ã¦ãã¾ããæ®ãï¼äººã¯äºä»¶ã¸ã®é¢ä¸ããªãã£ããã¨ãåãã£
ãç«ã®ããã¤ã¨ãã¦æåãªãCIAO ã¡ã ï½ããã®å¡©åæ¿åº¦ãé«ãã¦ç«ãè ä¸å ¨ã«ãªã£ããããããªããããããªããã2ææ«ã«SNSãTwitterãã«æ稿ããã25,000件以ä¸ããªãã¤ã¼ãããæ¡æ£ããäºæ ãèµ·ãã¦ãã¾ãã ã©ããªããï¼ãæ稿ãããããã¯ã ç«ãè ä¸å ¨ã«ãªã£ã¦è²ã 調ã¹ãããã«ãªã£ããããã¤ã«ããã¦ãããã¥ã¼ã«ãã®å¡©åæ¿åº¦ãé常ã«é«ãäºãããã£ãã ããã¯å¥åº·ãªç«ã§ãé »ç¹ã«ä¸ããã°ããã¦è ä¸å ¨ã«ãªãããå¯è½æ§ãããã£ã¦ãã¨ã ãããªäºç æ°ã«ãªããªãã¨ããããªãããâ¦(´ï¼Ïï¼`) åºå ¸:Twitterã«æ稿ãããå 容ãç¾å¨ã¯åé¤æ¸ã¿ ã¨ãããã®ã§ãã ã»ãã®ã¦ã¼ã¶ã¼ãããå¡©åæ¿åº¦ã¯é«ããªããã¨èª¤ããææããããã®ã®ãæ稿è ã¯ééããèªããã¢ã«ã¦ã³ããéå ¬éã«ãããã¯è¦ãããªããªãã¾ããããè¨æ£ãããªãã¾ã¾ã¨ãªã£ã¦ãã¾ãã ãCIAO ã¡ã ï½ããã®å¡©åæ¿åº¦ã¯é«ãã®ãï¼ãããªã°ã«èãã
ããã¯åä½ãã©ã®ãããåä½ãã¨ããã¨ãã·ã§ã¼ã·ã£ã³ã¯ã®ç©ºã«ãã¯ã©ã¹ã ã¨æããæããã«ç§ãè¦ãæ ç»ã®åä½ããã20ã«ã¯å ¥ããããã10ã«å ¥ãã¦ããããããããªãã æåãªä½åã§ã¯ããã2005å¹´å ¬éã®ä½åã§ãããï¼ãããããæ¸ããã»ãã説æããããã®ã§ï¼ãããããæ¸ããªããè¦ç¹ãã¾ã¨ãã¦ãããèå°ã¯ã¢ã¡ãªã«ä¸è¥¿é¨ã¯ã¤ãªãã³ã°å·ï¼æ代ã¯1960å¹´é ã80å¹´é ã¾ã§ãä¸»äººå ¬ã¯äºäººã®ã«ã¦ãã¼ã¤ã®éå¹´ï¼ã¸ã£ãã¯ã¨ã¤ãã¹ã§ãããå½¼ãã¯å¤ã®éããã¼ã¯ããã¯ã»ãã¦ã³ãã³ã§ç¾ãæ¾ç§ããå£ç¯å´åãåãããäºäººã¯é大ãã¤éé ·ãªãããã¼å±±èãï¼ç¾ãé£ãã¦é§ãæãã¦ãããä»äºã§ååããä¸ã§äºäººã®éã«ã¯åæ ãè½çããï¼ã¤ãã§ã«ä¸ç·ãè¶ ããï¼ã çµå±äºäººã¯å¤ãçµãã£ã¦ä»äºãçµããã¨é¢ãé¢ãã«ãªãï¼é£çµ¡ãã¨ããªãã¾ã¾ï¼ï¼å¹´ã®æ³æãéãããäºäººã¨ãçµå©ãã¦å®¶åºãæã¡åä¾ããããããï¼ããããã®äºæ ã«ããã©ã¡ãã幸ããªå®¶åºãç¯
ã¯ããã«ã»ããã³ãé ãã¾ããã 以åãç§ãããã°ããã³ä¼ç»ãããã¾ããããéä¸ã§çµããã¾ããããããªç§ããããã³ãåãåãã¾ããã以ä¸ã®ã¨ã³ããªããã§ãã kuroihikari.hatenablog.com æè¿èãã¦ããã®ã¯ãæ¹å¤ãç½µåãæªå£ãDisãç©ã¿éãªã£ã¦ã注ç®åº¦ãéã¾ãã¤ã³ã¿ã¼ãããã«ããã¦ãæ¬å½ã«ç´ æ´ãããã¢ãã¨ã¯ä½ãªã®ã ãããï¼ã¨ãããã¨ã§ãããããªç§ã«ã¯æ¸¡ãã«å²ä¹ãªããã³ã§ããããããã¨ããããã¾ãã èªãã è¨äºã¨ãèªåã§æ¸ããè¨äºã®ãä¸çªãã決ããä¼ç»ãªã®ã§ããã2ä½ãè¯ãè¨äºãªã®ã§ããããããã¹ãã¨æ¬¡ç¹ï¼2ä½ï¼ãç´¹ä»ãã¾ãã ç§ãé¸ãã ãã¹ãè¨äºã èªä¼ã誰ã§ãæ¸ããå°èª¬ã§ããã®ã¨åãã§ã誰ã§ãæ¸ããããã°è¨äºã¯ã人çãã ã¨æãã¾ããçµé¨ã¨ãã¦ã®çããããç¨å°ãã¯ããã§ãããããã©ããªäººã®ã©ããªä¸æ¥ãããããããã°è¨äºæ¸ããã¢ãã¯çãã価å¤ã®ãããã®ã ã¨æãã¾ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}