You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
ãã®è¨äºã¯Deep Learning Advent Calendar 2015ã®3æ¥ç®ã§ãããã¤ãèªãã§ã°ããã§æªãããDeep Learningã®è©±é¡ãªãä½ã§ããããããªã®ã§ç»é²ãã¦ã¿ã¾ããã Theanoã«ããç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å®è£ (2)ï¼2015/7/14ï¼ã®ã¤ã¥ãã ããæè¿ã¯Chainerã使ã£ã¦ããããã©ã¾ãææ³ã®åå¼·ãå ¼ãã¦Theanoã§ã®å®è£ ã«æ»ããããChainerãTensorFlowããããã ããTheanoãªãã¦ãã誰ã使ããªãï¼ããããªããã»ã»ã»Theanoã¯Deep Learning Tutorialãã¯ãããå®è£ ä¾ãè±å¯ã«ããã絶å¦ãªç²åº¦ã§å°åããããã®ã§ææ³ã®åå¼·ã«ã¡ããã©ãããã ããã ä»åãããã°ãããã¾ãã¾ãªèªå·±ç¬¦å·åå¨ï¼Autoencoderï¼ãæ¤è¨¼ãã¦ããããã深層å¦ç¿ã®ã¡ãªããã§ããç¹å¾´ã®èªåå¦ç¿ã®åºç¤ã«ãªãã¨ãããªã®ã§ãã£ããç
ååã®è¨äºã§ã¯chainerã®ã¤ã³ã¹ãã¼ã«ãããµã³ãã«ã³ã¼ãã使ã£ã¦ç»åèå¥åé¡ã解ãã¨ããã¾ã§ããã¾ããã hi-king.hatenablog.com ä»åã®è¨äºã§ã¯å帰ã»åé¡åé¡ç¨ã®ã·ã³ãã«ãªãã¥ã¼ã©ã«ãããã®ä½ãæ¹ããããã¨æãã¾ããandã¨xorã®è«çå¼ãå¦ç¿ããã¾ããchainerã§ã®å®è£ ã®å¦ç¿ã¨ããã¨ãã¥ã¼ã©ã«ãããã®æè²ç®çã«ä½¿ãããããªã¼ã¨æã£ãã®ã§ã2層ã®ãã¥ã¼ã©ã«ãããã¾ã§æ®µéããµãã§è§£èª¬ãã¦ããã§ãããããã°ã©ã èªãã»ããå¾æãã£ã¦æ¹ã¯ä¸çªæå¾ã®ã³ã¼ããå ã«èªãã ã»ããããããããããããã¾ããã 追è¨(7/13)åãã§ã㯠chainer1.1.0ããåãã§ãã¯ãå ¥ã£ãã®ã§(https://github.com/pfnet/chainer/pull/95)ãèå¥ã«ã¯float32ãå ¥åãã¦int32ãåºåãå帰ã«ã¯float32ãå ¥åãã¦float32ãåºåãã¨ã
1æ¥ã¡ãã£ã¨åã«ãPFNããæ°ãããã£ã¼ãã©ã¼ãã³ã°ãã¬ã¼ã ã¯ã¼ã¯"chainer"ãå ¬éããã¾ãã[1]ã触ã£ã¦ã¿ãæãã®ç¹å¾´ã¯ãpythonã®ã³ã¼ãã§å®çµããã®ã§ãã·ã¹ãã ã«çµè¾¼ã¿ãããããã§ãå¦çã®å 容ãèªã¿ããããåæã«ãå¦çã®å 容ã«èå³ãæããã«ä½¿ãã«ã¯é£ããã¨ããæãã§ããããã¼ã¹ã«ãã¦ããããããã¼ã«ãä½ãã«ã¯æé©ã«æããã®ã§ããããããchainerããã¼ã¹ã«ããæ§ã ãªç¨éã®ãã¼ã«ãã§ããã®ãæå¾ ããã¾ãã CPUç¨ã¤ã³ã¹ãã¼ã« ~ MNISTã®ãã¬ã¼ãã³ã° ããã§ã¯ãchainerã®ãã¥ã¼ããªã¢ã«[1]ã«æ¸ãã¦ããã¨ããã«ã¤ã³ã¹ãã¼ã«ã¨åæã¿ã¹ã¯ããããªãã ãã§ãã ã¤ã³ã¹ãã¼ã«ã¯ãgithubããã½ã¼ã¹ãè½ã¨ãã¦ãã¦python setup.py installã§ããpipã§å ¥ãã¦ãããã¨æãã¾ããã¨ããããããã§ã¯pip pip install chainer ããã§
#ã¯ããã« ããããDQNãä½ãããã£ããããããªãã¦ãä»ã®ç®çã§Chainerã使ãããã£ãã®ã§ãã®ç·´ç¿ã«DQNãæ¸ãããã§ããããã£ããã ãå ¬éãããã¨æãã¾ãã å ¬éãã¾ãã ãã¾ãã©ããå ¬éãããªãããã®æ©ä¼ã«ããï¼Qå¦ç¿+é¢æ°è¿ä¼¼ï¼é¢é£ã§æã£ã¦ããç¥èãã¤ãã§ã«æ´çãããã¨æã£ã¦ã¾ã¨ãã¾ããã ãã¥ã¼ã¹è¨äºã¨ãNatureã¨ãNIPSã®è«æã ãèªãã¨ãDQNä½ã£ãDeepmind/Googleããã¼ï¼ï¼ï¼ã£ã¦æè¦ã«ãªãããã§ãããå¼·åå¦ç¿çãªæ´å²ççµç·¯ãèããã¨å¼·åå¦ç¿+深層å¦ç¿ã«ãªã£ãããããããªãå½ç¶ã®æãè¡ãã§çã¾ããæè¡ã§ãããã¨ããããã¾ããï¼ATARIã®ã²ã¼ã ã人é以ä¸ã®ããã©ã¼ãã³ã¹ã§ãã¬ã¤ããã¨ããã®ããã¸ã¥ã¢ã«çã«ããããããã£ã$\leftrightarrow$åé¡è¨å®ãè¯ãã£ãã¨ããã®ãããã¾ããï¼ ãã®è¨äºã§ã¯NIPSã¨Natureã®ä»¥ä¸ã®ï¼æ¬ã®è«æ ã»
1. è«ï¥â½æç´¹ä» Semi-âââsupervised  Learning with  Deep  Generative  Models NIPS2014èªã¿ä¼  @  æ±â¼¤å¤§,  2015/01/20 Preferred  Networks,  å¾å± Â èª ä¹ @beam2d 2. lï¬â¯ ã©ãã«ãããã¼ã¿ãå°ãªãã¦ï¼ããã ãã§ã¯åé¢ï§ªæ²â¾¯é¢ã決ãã¥ãã lï¬â¯ ã©ãã«ãªããã¼ã¿ã使ã£ã¦ç©ºéãè£éãã¦ï¼ããæãã«åé¢ï§ªæ²â¾¯é¢ã決ããã â  åæ師ããå¦ç¿ åæ師ããå¦ç¿  (semi-âââsupervised  learning) 2 ç« â½ç¬ ã©ãã«ãããã¼ã¿ï¼å°ãªãï¼ ã©ãã«ãªããã¼ã¿ï¼å¤ãï¼ 3. å¾æ¥â¼¿ææ³ï¼â¼¤å¤§ãã  4 Â ç¨®é¡ 3 â¾èªâ¼°å·±æ⽰示ã«ããå¦ç¿ â¢â¯ å¦ç¿ããäºæ¸¬å¨ã使ã£ã¦ã©ãã«ãªã ãã¼ã¿ãã©ãã«ä»ããã â¢â¯ ⼤大ãã¼ã¸ã³ã®ä»®èª¬ãâ¼å ¥ãããã¨ãã ãï¼Tr
Preferred Infrastructure(以ä¸PFI)ããã¹ãã³ãªãããä¼ç¤¾ãPreferred Networksã®ãªãªã¼ã¹ããDeepLearningã©ã¤ãã©ãªã®Chainerãããããã¨è©±é¡ã«ãªã£ã¦ãã¾ãã*1 解説 Deep Learning ã®ãã¬ã¼ã ã¯ã¼ã¯ Chainer ãå ¬éãã¾ãã | Preferred Research å ¬å¼ Chainer: A flexible framework of neural networks GitHub pfnet/chainer · GitHub ããã¥ã¡ã³ã Chainer â A flexible framework of neural networks â Chainer 1.1.0 documentation ããããåé²åº ãã£ã¼ãã©ã¼ãã³ã°æè¿ã®çºå±ã¨ãã¸ãã¹å¿ç¨ã¸ã®èª²é¡ å ¬å¼ãã¤ãã¿ã¼ chainer (@Chai
Chainerã§Autoencoderã試ãã¦ã¿ãè¨äºã§ããååã®è¨äºãããæ©æ¢°å¦ç¿ããã£ã¼ãã©ã¼ãã³ã° ãã¬ã¼ã ã¯ã¼ã¯Chainerã試ããªãã解説ãã¦ã¿ãããã®ç¶ãã¨ãªãã¾ãããã£ã¼ãã©ã¼ãã³ã°ã®äºåå¦ç¿ã«ã使ãããæè¡ã§ããã æ¬è¨äºã§ä½¿ç¨ããã³ã¼ãã¯ã³ãã©ããåå¾ã§ãã¾ãã #1.æåã«# Autoencoderã¨ã¯Auto(èªå·±) encode(符å·å)er(å¨)ã§ããã¼ã¿ã2層ã®ãã¥ã¼ã©ã«ãããã«éãã¦ãèªåèªèº«ã®ãã¼ã¿ã¨ä¸è´ããåºåãããããããã©ã¡ã¼ã¿ã¼ãå¦ç¿ããããã®ã§ãããã¼ã¿ã ãããã°è¯ãã®ã§ãåé¡çã«ã¯æ師ãªãå¦ç¿ã«ãªãã¾ãã å¦ç¿ãã§ã¼ãº ãããªãã¨ããã¦ä½ãå¬ããã®ãã¨ããã¨ã å ¥åã«åããããã©ã¡ã¼ã¿ã¼$w_{ji}$ãè¨å®ã§ãããï¼å ¥åãã¼ã¿ã®ç¹å¾´ãæ½åºã§ããï¼ ãã®å ¥åã«åããããã©ã¡ã¼ã¿ã¼ã使ããã¨ã§ãã£ã¼ããªãã¥ã¼ã©ã«ãããã§ã®å¦ç¿ãå¯è½ã«ããï¼ã©ã³ã
ä»è©±é¡ã®Deep Learning(深層å¦ç¿)ãã¬ã¼ã ã¯ã¼ã¯ãChainerã«ææ¸ãæåã®å¤å¥ãè¡ããµã³ãã«ã³ã¼ããããã¾ãããã¡ãã使ã£ã¦å 容ãå°ã解説ããè¨äºãæ¸ãã¦ã¿ããã¨æãã¾ãã (æ¬è¨äºã®ã³ã¼ãã®å ¨æãGitHubã«ã¢ãããã¾ããã[PCæ¨å¥¨]) ã¨ã«ãããã¤ã³ã¹ãã¼ã«ããããç°¡åãã¤ãPythonãæ¸ããã°ããã«ä½¿ããã¨ãã§ãã¦ããããã§ãï¼ Pythonã«éãã¦ã³ã¼ããæ¸ããã®ããããããã§ãããã ãããªæãã®ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¢ãã«ã試ãã¦ã¿ããã¨ããè¨äºã§ãã 主è¦ãªæ å ±ã¯ãã¡ãã«ããã¾ãã Chainerã®ã¡ã¤ã³ãµã¤ã Chainerã®GitHubãªãã¸ã㪠Chainerã®ãã¥ã¼ããªã¢ã«ã¨ãªãã¡ã¬ã³ã¹ #1. ã¤ã³ã¹ãã¼ã«# ã¾ãã¯ä½ã¯ã¨ãããã¤ã³ã¹ãã¼ã«ã§ããChainerã®GitHubã«è¨è¼ã®"Requirements" ( https://github.
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, discuss our model and its possible applications to Flipboardâs products. High quality and a print-like finish play a key role in Flipboardâs design language. We want users to enjoy a consistent and beautiful
ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨æ·±å±¤å¦ç¿ What this book is about On the exercises and problems ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãç¨ããææ¸ãæåèªè éä¼æã®ä»çµã¿ ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å¦ç¿ã®æ¹å ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãä»»æã®é¢æ°ã表ç¾ã§ãããã¨ã®è¦è¦ç証æ ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãè¨ç·´ããã®ã¯ãªãé£ããã®ã 深層å¦ç¿ Appendix: ç¥æ§ã®ãã ã·ã³ãã«ãª ã¢ã«ã´ãªãºã ã¯ããã? Acknowledgements Frequently Asked Questions Sponsors Resources ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨æ·±å±¤å¦ç¿ãã¯ç¡æã®ãªã³ã©ã¤ã³æ¸ç±ã§ãã ãã®æ¬ã§ã¯ã次ã®ãããªå 容ãæ±ãã¾ãã ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼ã³ã³ãã¥ã¼ã¿ã«ã観測ãã¼ã¿ã«ãã¨ã¥ãã¦å¦ç¿ããè½åãä¸ãããçç©å¦ã«ãã³ããå¾ãããã°ã©ãã³ã°ãã©ãã¤ã ã æ·±
ã©ã³ãã³ã°
ãç¥ãã
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}