åç»é ä¿¡ã«ããã主æµãªDRMï¼PlayReadyãWdievineãFairPlay Streamingï¼ã«ã¤ãã¦æ¦è¦ã説æãã¾ãã

åç»é ä¿¡ã«ããã主æµãªDRMï¼PlayReadyãWdievineãFairPlay Streamingï¼ã«ã¤ãã¦æ¦è¦ã説æãã¾ãã
AbemaTVã®ä»æ§ã«ã¤ãã¦æ°ã«ãªã£ãã®ã§èª¿ã¹ã¦ã¿ã (ç ç©¶ç®çã§ã念ã®çº)ã AbemaTVã¯PCã¸ã®åç»é ä¿¡ã«ããã¦ãé ä¿¡ãããã³ã«ã«HLSã使ç¨ãã¦ããããã ãHLSã¯MPEG-DASHã¨ç°ãªãDRMã使ãã (å³å¯ã«ã¯Macç°å¢ã®Fairplayãªã©ã®ä¾å¤ãããã) ãAbemaTVã§ã¯éµã®çæã«è¥å¹²å·¥å¤«ãè¡ã£ã¦ãã®ã¿ã®ããã ã ã¾ããAPIã使ã£ã¦ãã£ã³ãã«ä¸è¦§ããã¦ã³ãã¼ãã $ curl https://api.abema.io/v1/channels {"channels":[{"id":"abema-news","name":"AbemaNewsãã£ã³ãã«","playback":{"hls":"https://linear-abematv.akamaized.net/channel/abema-news/playlist.m3u8"}},{"id":"abema-spe
FRESH!ã§åçãæ¢ã¾ã£ã¦ãã¾ã£ãã¨ãã«ãChrome DevToolsã®Networkã¿ããè¦ã¦ããã¨ããã.m3u8ã¨ãããã¡ã¤ã«ã®åå¾ã«å¤±æãã¦ãããã¨ãåããã¾ãããããããã.m3u8ãã¡ã¤ã«ã¨.tsãã¡ã¤ã«ãç¨ãã¦å®ç¾ãããã©ã¤ãåç»é ä¿¡ã®ä»çµã¿HTTP Live Streaming (HLS)ã®æåã«ã¤ãã¦èª¿ã¹ãå®éã®éä¿¡å å®¹ã¨æ¯è¼ãã¦ãã¯ã©ã¤ã¢ã³ãå´ã®åä½ãããã¡ã¤ã«ã®å 容ãªã©ã®ä»çµã¿ãè¦ãã¦ãã¾ããã ãã®åºæ¬çãªã¨ããã«ã¤ãã¦ã®çè§£ãå³è§£ãã¦ã¿ãã®ã§ãããã«ã¡ã¢ï¼ç´¹ä»ãã¦ããã¾ãã å®éã®æåã«ã¤ãã¦ã¯ããµã¤ãã¼ã¨ã¼ã¸ã§ã³ãã®åç»é ä¿¡ãµã¼ãã¹ãFRESH!ãããã³ããAbemaTVãã®æåãåèã«ãã¾ããã ç®æ¬¡ 1. HTTP Live Streaming (HLS)2. ï¼ç¨®é¡ã®ãã¡ã¤ã«ãç¨æãã¦åç»é ä¿¡ãã2.1. .tsãã¡ã¤ã«ï¼åç»ï¼2.2. .m3u8ï¼ã
è¿½è¨ 2016/02/16 ã« ffmpeg version 3.0 ããªãªã¼ã¹ããã¾ããã ver 3.0 ã§ã¯ libaacplus libvo-aacenc ãåé¤ããããªã©ãã³ã¼ããã¯ã¨ã³ã³ããã®çµ±å»åãè¡ãããããã§ãã ãã®ã¨ã³ããªã¯ ffmpeg version 2.x ã«ã¤ãã¦è¨è¿°ãã¦ããããã ver 3.x ã§ã¯ãã®ã¾ã¾ã§ã¯åããªãé¨åãããããããã¾ããããçæãã ããã ã¾ãã libfdk_aac ã使ããªãå ´åã¯ã libfaac ã使ç¨ãã¦ãã ããã æ¬æ ffmpeg ã使ã HLS ã使ã£ãã¹ããªã¼ãã³ã°ã mp4 ãã©ã¼ãããã§ä¿åãããããã®å対㫠mp4 ããã¹ããªã¼ãã³ã°ãè¡ã(m3u8 㨠ts ãã¡ã¤ã«ãçæãã)æ¹æ³ã«ã¤ãã¦èª¬æãã¾ãã ã¾ãã¯ãffmpeg ãã¤ã³ã¹ãã¼ã«ãã¾ããæ¢ã«ã¤ã³ã¹ãã¼ã«ããã¦ããå ´åã¯ãAAC, H264, MP4
- ã¯ããã« - Pythonã§OSSããã±ã¼ã¸çãå©ç¨ãã¦ããã¨ãExceptionãçºçããéã«è¡¨ç¤ºãããTraceback(æ£ç¢ºã«ã¯ã¹ã¿ãã¯ãã¬ã¼ã¹)ãããªãé·ãå ´åãããã ä¾ãã°ã以ä¸ã®ç°¡æãªã³ã¼ãå®è¡ã§è¡¨ç¤ºãããTracebackã®è¡æ°ã¯30è¿ããªãã import pandas as pd df = pd.DataFrame(dict(a=[1,2,3])) df['b'] å¼ç¨ : python - Shorten large stack traces when using libraries - Stack Overflow ããè¤éãªããã°ã©ã ã«ããã¦ã¯ããã®æ¯ã§ã¯ãªãã ã«ãé¢ããããè¨è¿°ãã¹ã®ããã«Tracebackä¸ä½é¨ã«ã¨ã©ã¼ã®éè¦ãªå 容ãããå ´åãããã°ãããã±ã¼ã¸å é¨ã®Validationã§ä¸ä½é¨ãéè¦ãªå ´åãããã å¾ã¦ãã¦Pythonéçºç°å¢ã¨ãã¦å©ç¨ã
Welcome to an object detection tutorial with OpenCV and Python. In this tutorial, you will be shown how to create your very own Haar Cascades, so you can track any object you want. Due to the nature and complexity of this task, this tutorial will be a bit longer than usual, but the reward is massive. While you *can* do this in Windows, I would not suggest it. Thus, for this tutorial, I am going to
ãã¦ãæ¨å¹´è¡ã£ãGTC Japan 2017ã§ã¯ç©ä½æ¤åºã®ãã¢ãè¡ã£ã¦ãããã¼ã¹ãå¤ããçãä¸ãããè¦ãã¦ããåéã¨æãã¦ãã¾ãã ãããã«ãç©ä½æ¤åºã®ãã¢ã£ã¦ãããAIæ(?)ãããã¾ãã ä»åã®è¨äºã¯ãªã¢ã«ã¿ã¤ã (~0.1sec)ç©ä½æ¤åºã«ä½¿ãããSSDåã³ãã®æ´¾çã¢ãã«ã®ã話ã [1]SSDæ¤åºçµæ ç©ä½æ¤åºã®é£ãã SSD ãããã¯ã¼ã¯æ§é ãã«ãããã¯ã¹ãããã³ã° default boxã¨å帰ã«ãããªãã»ããäºæ¸¬ ãã¼ããã¬ãã£ããã¤ãã³ã° ãã¹é¢æ° ãã¼ã¿ãªã¼ã°ã¡ã³ãã¼ã·ã§ã³ DSSD(Deconvolutional Single Shot Detector)ã®ç»å ´ Deconvolutional Module ResNetã使ãã Prediction Moduleã®å¤æ´ Default Boxå¢ããã ESSD ESSDã§ã¯ãã£ã±ãVGGã使ãã 飿¥ããFeatureMa
2. ç©ä½æ¤ç¥ï¼Object Detectionï¼ 2 ⢠ç©ä½æ¤ç¥ã¯ç©ä½ã©ãã«ã¨ä½ç½®ãåæå帰 Person Uma ç©ä½2 ç©ä½èå¥ï¼Umaï¼â¾ºï¼ ä½ç½®ï¼x,y,w,hï¼ï¼118, 250, 89, 146 ç©ä½ï¼ ç©ä½èå¥ï¼Personï¼â¼ï¼ ä½ç½®ï¼x,y,w,hï¼ï¼125, 15, 78, 162 ç»åã¯Pascal VOC datasetããæç² ⢠ç©ä½èå¥ã¯ImageNet/Places365çã¨åæ§ã«ä¸ããããç»å ï¼ãã®å ´åã¯åãæããããããï¼ããâ½£æ ⢠ä½ç½®ã¯å·¦ä¸ã®x, y座æ¨ã¨å¹ w, â¾¼hãè¿å´ï¼ã³ã¼ãã«ããå·¦ä¸x1, y1 å³ä¸x2, y2ãè¿å´ããã®ã§æ³¨æï¼ 3. ç©ä½æ¤ç¥ã®å¤é·ï¼Ê¼01ãʼ19ï¼ 3 Haar-like [Viola+, CVPR01] + AdaBoost Fast R-CNN [Girshick, ICCV15] ROI Pooling,
èªåé転ã«ãå¿ç¨ããã精緻ãªç»åèªèæè¡ããç»åã»ã°ã¡ã³ãã¼ã·ã§ã³ãã¨ã¯ï¼äºä¾ã交ãã¦ãããããã解説 è¿å¹´ããã£ã¼ãã©ã¼ãã³ã°ï¼æ·±å±¤å¦ç¿ï¼ãä¸å¿ã¨ããæ©æ¢°å¦ç¿ã®æè¡ã注ç®ãéãã¦ãã¾ãããã®ããããªå¿ç¨å ã®ï¼ã¤ãç»åèªèã§ãã ä»åã¯ãç»åÃæ©æ¢°å¦ç¿ãã«ãã£ã¦ã精緻ãªç»åèå¥ãå¯è½ã«ããæè¡ãâç»åã»ã°ã¡ã³ãã¼ã·ã§ã³âã«ã¤ãã¦è¦ã¦ããã¾ãããã ç»ååé¡ã®ç¨®é¡ã«ã¤ã㦠ãç»åÃæ©æ¢°å¦ç¿ãã¨ãã£ã¦ããã®å¿ç¨ä¾ã¯ããããããã¾ãã ç»åã»ã°ã¡ã³ãã¼ã·ã§ã³ã®ç¹å¾´ãçè§£ããããã«ããã¾ãã¯ãã使ããã¦ãããã®ä»ã®ç»åå顿è¡ãè¦ã¦ããã¾ãããã ä»åã¯ç»åã»ã°ã¡ã³ãã¼ã·ã§ã³ãå«ãããã¡ãã®ï¼ã¤ãç´¹ä»ãã¾ãã ï¼ï¼ç»ååé¡ï¼classificationï¼â¦âãã®ç»åãä½ãªã®ãâãèå¥ ï¼ï¼ç»åæ¤åºï¼detectionï¼â¦âãã®ç»åã®ã©ãã«ä½ãããã®ãâãèå¥ ï¼ï¼ç»åã»ã°ã¡ã³ãã¼ã·ã§ã³(segme
ææ°ã®ç©ä½æ¤åºæ å ±ï¼2022/1/1追è¨ï¼ ãã®è¨äºãã3å¹´è¿ãåã®è¨äºã¨ãªããææ°ã®æ å ±ããæ¯ã¹ãã¨æ å ±ãå¤ããªã£ã¦ãã¾ãã¾ãããææ°ã®ç¶æ³ã«é¢ãã¦ã¯ä»¥ä¸è¨äºãã¨ã¦ãåèã«ãªãã¾ãã 以ä¸ã®è¨äºããéå»ã®æµããªã©ã¯åèã«ãªãã¾ãããã¾ã 使ããé¨åãå¤ãããã¨æãã¾ãã®ã§ããããããã°åèã«ãã¦ã¿ã¦ãã ããã ç©ä½æ¤åºããã£ã¦ã¿ãåã«æ¤åºã¨èªèã®éã ããã¾ã§ããã£ã¼ãã©ã¼ãã³ã°ã使ã£ã¦ç»åã®èªèãä½åº¦ããã£ã¦ãã¾ããï¼ä»¥ä¸åç §ï¼ã ç»åèªèã®æ¬¡ã¯ãç©ä½æ¤åºã«æãåºãã¦è¦ãããªã¨ãããã¨ã§ããã£ã¼ãã©ã¼ãã³ã°ã使ã£ãç©ä½æ¤åºã«é¢ãã¦èª¿ã¹ã¦è©¦ãã¦ã¿ããã¨ã«ãã¾ããã ãããããç©ä½æ¤åºã£ã¦ä½ã§ãèªèã¨ä½ãéãã®ãã¨ããã¨ãããããèªèã¨ããè¨ãã¨çµæ§åºãæå³ã«ãªã£ã¦ãã¾ã£ã¦ãç»åã®ãã®ãã®ãä½ããå¤å¥ããã®ã¯ç»ååé¡ã¨ããã®ãæ£ãããã§ããã¤ã¾ããç§ããã£ãä¸è¨ã®ä¾ã¯åºæ¬çã«ã¯ç»ååé¡ã¨ãªã
ååã¾ã§ã®OpenCV ãã¦ãååã¯ãµã³ãã«10æã§ã¤ã«æ¤åºå¨ã使ãã¦ã¿ãã¨ããè¦äºã«æ¤åºã«å¤±æãã¾ããã ã¨ããããã§ãä»åã¯ãµã³ãã«ãæ°ãå¢ããããããã©ã¡ã¼ã¿ã夿´ããªãããããã試ãã¦ã¿ããã¨æãã¾ãã opencv_createsamplesã«ãããµã³ãã«ã®çæ createsamplesã³ãã³ãã使ç¨ãããã¨ã§ã1æã®ç»åããè§åº¦ããµã¤ãºã夿´ãã大éã®ãµã³ãã«ãèªåçæãããã¨ãåºæ¥ã¾ãã opencv_createsamples.exe -img face.jpg -num 1000 -vec test.vec -img :å ã«ãªãç»åãæå®ãã¾ãã -num :çæããç»åã®æ°ãæå®ãã¾ãã -vec :çæããç»åããä½ãããvectorãã¡ã¤ã«ã®åå ãã®ä»ã®ãªãã·ã§ã³ã¯ä½ããªãã·ã§ã³ãä»ããªãã§ã³ãã³ããå®è¡ãã¦ç¢ºèªãã¦ãã ããã ããã©ã«ãã§ã¯çæããç»åã®ãµã¤
ããã«ã¡ã¯ï¼ã¢ã¤ããã¼ç ä¿®çã®å·å ã¨ç³ãã¾ãã çªç¶ã§ãããã¿ãªããã«ã¯ã¦ã½ã£ã¦ãåç¥ã§ããï¼ï¼ 坿ãã§ããããã ããç¬ã¨ç«ã©ã£ã¡æ´¾ã¨ãèããã¾ããåã¯æç¶ã«ã¯ã¦ã½æ´¾ã§ãã OpenCVã¨ããã®ã使ãã¨ããã©ã«ãã§ä½æããã¦ããã¢ãã«ãç¨ãã¦äººéã®é¡ãæ¤åºãããã¨ãåºæ¥ã¾ããOpenCVã«ã¤ãã¦ã¯ä¸è¨ã®ãªã³ã¯ãã覧ãã ããã æ©æ¢°å¦ç¿ã®ããã®OpenCVå ¥é OpenCVã§ç©ä½æ¤åºå¨ã使â åºç¤ç¥èãéçºä¼ç¤¾ãããã§ããµã 人ã®é¡ã®ç»åã®ç¹å¾´éãæ½åºãããã¨ã«ããå¦ç¿ããã®ã§ãããå¦ç¿ãããã¢ãã«ã«ããã¦ã¯Haar-likeç¹å¾´ã¨ããã®ãç¨ãã¦ãã¾ããHaar-likeç¹å¾´ã¯ãç°¡åã«è¨ãã¨ç»åã®ææå·®ã«ããç¹å¾´ãæãã¾ããä¾ãã°äººéé¡ã§è¨ãã°ç®ã¯é»ããç®å ã¯æããã¨ãã£ãç¹å¾´ãããããåããã¨ã§ã人éã®é¡ã®ç¹å¾´å ¨ä½ãæããæãã§ãã Haar-likeã«ã¤ãã¦(è±èªã§æ¸ããã¦ãã¾ã)
30å¹´ã«ããã£ãã¹ãã¼ã¹ã·ã£ãã«è¨ç»ã«å¹ãéãã7æ21æ¥ãæå¾ã®ã¹ãã¼ã¹ã·ã£ãã«ãã¢ãã©ã³ãã£ã¹ãã®å¸°éãå¾ ã¤ç±³èªç©ºå®å®å±ï¼NASAï¼ã®ç®¡å¶å®¤ã§ã¯ãæ¥æ¬ã®å人ãè¶£å³ã§ä½ã£ãWebã¢ããªã大åã¹ã¯ãªã¼ã³ã«æ ãåºããã¦ããããã®å¿å¢ãä½è ãããã°ã«ã¤ã¥ã£ã¦ããã Googleãããä¸ã«å½éå®å®ã¹ãã¼ã·ã§ã³ããããã«å®å®æé é¡ã®è»éããªã¢ã«ã¿ã¤ã ã«è¡¨ç¤ºãããGoogleSatTrackãï¼GSTï¼ã®ä½è ãæäºåéããã¯ã帰éã¸ã®è»éé¢è±å´å°æä»¤ãã¢ãã©ã³ãã£ã¹ã«åºãNASA管å¶å®¤ã®å¤§åã¹ã¯ãªã¼ã³ã«ãè¦æ £ããç»é¢ãæ ã£ã¦ããã®ã«æ°ä»ããã ããã«èªãéçºããGSTã ã¨æã£ããã®ã®ãä¿¡ããããªãã£ãã¨ãããããããã ã£ã¦ãä¸ä»ã®ã¢ããã¥ã¢ããã°ã©ããä½ã£ãWebã¢ããªããããã·ã§ã³ã®ä¸ã§ãä¸çªã¯ãªãã£ã«ã«ãªå¤§æ°ååçªå ¥åã®ããã·ã§ã³ã³ã³ããã¼ã«ã»ã³ã¿ã¼ã®ç»é¢ã«æ ã£ã¦ãããããã§ä¿¡ããã¨ããæ¹ããã
19æ¥ã«è¡ããã Kyoto.ãªãã #3 ã§çºè¡¨ã»ãã¢ãããã¦ããã ããå 容ã¾ã¨ãã§ãã ã¯ããã«: æ¤åºå¨ã®éè¦æ§ ã¢ã¤ãã«é¡èå¥ ããã£ã¨ãã£ã¦ããä¸ã§ãé¡ã®èå¥ã»åé¡(Classification)ã¯CNNã使ã£ã¦åºæ¥ã¦ããããã© ã¾ã 䏿ãåºæ¥ã¦ããªãå¥ã®ã¿ã¹ã¯ããã£ã¦ã ãããç»åå ããã®é¡é åã®æ¤åº (Detection, Localization)ã ãç»åå ã«åã£ã¦ãã人ç©ã誰ã§ãããããèå¥ããããã«ã¯ãã¾ãã¯ãã®ç»åã«åã£ã¦ãããé¡ããæ¤åºããå¿ è¦ãããã ãã®æ¤åºãããé¡ããããã«ã¤ãã¦åé¡å¨ã«ããã¦ããã®é¡ã¯ââãããããã®é¡ã¯ÃÃãããã¨åé¡ãã¦ãããã¨ã«ãªãããã§ã åé¡å¨ã«ä¸ããå ¥åç»åãåãæãã¦æ½åºããã®ã«ãã¾ãé¡é åãæ¤åºããå¿ è¦ããããããã®åé¡å¨ãå¦ç¿ãããããã®ãã¼ã¿ã»ããããæ§ã ãªç»åããé¡é åãæ¤åºãã¦åãæãã¦ããããã«å¯¾ãã¦ã©ãã«ä»ããã
å æ¥ãã·ã£ããã¹ã§é§åã®æ°ãããµãã¼ãSRãåºã¾ãããã ãã®åããæã»æã»åã»æã幽谷é§åãã æããã¦ã©ããªã¤ã©ã¹ãã§ããããï¼ é ã£ï¼ ãã£ã¤ãã¨å¤§ããåãããèæ¯ã®ä¸ã«ããã¼ã¼ã³ã¨äººãããããããã«å°è±¡çã§ããã â¦â¦ããï¼ããã®æ§æãã©ããã§è¦ããã¨ãããã¾ãããï¼ ããã19ä¸ç´ãã©ã³ã¹ã»ãã«ãã¾ã³æ´¾ã代表ããç»å®¶ã ã¸ã£ã³ï¼ããã£ã¹ãã»ã«ãã¼ã¦ã»ã³ãã¼ã§ãï¼ ä»£è¡¨ä½ãã¢ã«ããã©ã³ãã¼ãã®æãåºããªããã人ç©ã®æ¯çãã»ã¨ãã©ãã®ã¾ã¾ãããªãã§ããï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ ã·ã£ããã¹ã¯ééããªããã«ãã¾ã³æ´¾ã®å½±é¿ãåãã¦ããï¼ï¼ çµããï¼ãéå»·ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ ãªã©ã¨ããè¶çªãããããã«çãå·ã£ãããã§ã¯ããã¾ããã ã·ã£ããã¹ã®çµµãããã§ãããã ããã£ãããã¬ã¤ãã¦ãªãã§ãããã¤ãã¿ã¼ã«ããæµãã¦ããã®ã§ãªãã¨ãªãè¦ããã¨ããã¾ããå®éãã½ã¼ã·ã£ã«ã²ã¼ã ã®
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}