ä¸éè¿°èªè«çã«ããèªç¶æ°è«ã®å½¢å¼åã§ããããã¢ãç®è¡ï¼Peano arithmeticï¼ããããã¯å¸¸å¾®åæ¹ç¨å¼ã«é¢ããããã¢ãã®åå¨å®çãã¨ã¯ç°ãªãã¾ãã ãã¢ãã®å ¬çï¼ãã¢ãã®ããããè±: Peano axiomsï¼ ã¨ã¯ãèªç¶æ°ã®å ¨ä½ãç¹å¾´ã¥ããå ¬çã§ããããã¢ãã®å ¬æºï¼è±: Peano postulatesï¼ãããã¯ãããã³ãï¼ãã¢ãã®å ¬çï¼è±: Dedekind-Peano axiomsï¼ã¨ãå¼ã°ãã[1][2]ã1891å¹´ã«ã¤ã¿ãªã¢ã®æ°å¦è ã¸ã¥ã¼ããã»ãã¢ãã«ããå®å¼åãããã ãã¢ãã®å ¬çãèµ·ç¹ã«ãã¦ãåçç®è¡ã¨æ´æ°ã»æçæ°ã»å®æ°ã»è¤ç´ æ°ã®æ§æãªã©ãå®éã«å±éãã¦ã¿ããå¤å ¸çãªæ¸ç©ã«ã1930å¹´ã«åºçãããã©ã³ãã¦ã«ããã解æå¦ã®åºç¤ãï¼Grundlagen Der Analysisï¼ãããã éå â ã¨å®æ° 0 ã¨é¢æ° Sã¨éåEã«é¢ãã次ã®å ¬çããã¢ãã®å ¬çã¨ãã[3][
{{#tags}}- {{label}}
{{/tags}}