ãã«ã¼ã¹ã«ã¤ã³ã¼ãã¼ @blueskycoffee23 @J_Bearz ããã«ã®å®´ä¼é¨ã§åãã¦ãé ã«æã£ãã®ã¯ãæ¥ç¸¾åªç§ãªä¼ç¤¾ã¯å®´ä¼è¸ããã¡ããã¡ãã¬ãã«é«ãã£ã¦ãã¨ãä¼ç¤¾ã®å¢ããééããªããã®ã¾ã¾å®´ä¼è¸ã«åºã¾ãã就活çã«å®´ä¼è¸è¦ã¦å¿æä¼æ¥æ±ºããã¨è¨ãããããããã¬ãã«ãé«ãçç±ã¯ãããããã¾ããã gto tatsuo @gtotatsuo @blueskycoffee23 @J_Bearz ããåããã¾ãã ã¦ã¨ãããªæ¥æ¬ã§ã¯ã¨ãã« ã人éã®ææ ããè³¼å ¥ã決å®ããï¼å¶æ¥ã®ä¸»ããè¦å ã ã æ¿æ²»ã社å ã§ã®è©ä¾¡ãªã©ã§ããè«çããç¸æã¸ã®å¿ãã°ããã大äºã ãããã㦠人éã®ææ§ã»å³è³ããã¡ãã¨èªããä¼ç¤¾ ãããçºæ®ããããã¨ã«é·ãã¦ããä¼æ¥ããã人ããã«æ´»ç¨ã§ããä¼æ¥ã§ã¯ï¼
ã¢ã¼ã±ã¼ãã§No.1ã®éº»éã²ã¼ã ããNintendo Switchã«ç»å ´ï¼ åºæ¬ã¯ãµããæã¡ã®éº»éã²ã¼ã ã女ã®åã¨æ¬¡ã ã«å¯¾æ¦ãã¦ããï¼ï¼°ã¢ã¼ãã¨åã¦ã°å±è¾±æãæããããã¸ã£ã³ãã¡ã¤ãããããã â ï¼ï¼°ãã¬ã¤ã¢ã¼ã 人ã¯çãç®ã«è¦ãããå¿ã®æ©ã¿ãæ±ãã¦ããã ãããªäººã ãéããææ¸ããã®ãåã®ä½¿å½ã ãã®æ段ã ãããã¹ã¦ã®åé¡ã¯éº»éã§è§£æ±ºã§ããã£ã¦ãããã麻éã§è§£æ±ºããã å½ãã£ã¦ç ããããããªæãã®ç©èªã ã â ã¸ã£ã³ãã¡ã¤ãã¢ã¼ã æ°¸é ã«éãç¶ããéå½ã«ããã2人ã®æ¼¢ï¼ãã¨ãï¼ã®è¡ã¨æ±ã¨æ¶ã®ç©èªã ã¨ããããããåã誰ï¼ãã£ã¦æãã以ä¸ã ãå©ããã£ã©ãéç¬ããç¹°ãåºãæå¿«ã§å¼·åãªå¿ 殺æå¤æ°ç¨æï¼
ã³ããã¯DAYSã è±ãã©ãã¯åãã¾ãï¼ DAYSã®é£è¼ä½åã®æ´æ°ãï¼æï¼ï¼æ¥ï¼ç«ï¼ãã ãã©ãã¯ã®æ¥µã¿ã ã£ããçå¤ä¸ï¼æããã çã£ç½ãã¯ã¤ããªãæ¼12æãã«åãæ¿ãã£ã»ã»ã»ï¼ ï¼ãã ãéèªã®æ´æ°ã¯ï¼æã®ã¾ã¾ã»ã»ï¼ï¼ éç¨ä¼ç¤¾ã®è±å½å°å·ã»æ¢ ç°ãããç¬é¡ã£ã»ã»ã»ï¼ ä»å¾ã¨ãã³ããã¯DAYSããªã«ã¨ãã£ã»ã»ã»ï¼ âããã¬ã¯ææ°è©±ã¯ãã¡ãï¼â âã³ããã¯DAYSé£è¼ä¸è¦§ãã©ããï¼â https://comic-days.com/today
2018å¹´4æ20æ¥ãDeep Learning Labã主å¬ããã¤ãã³ããé³å£°ã»è¨èªãã¤ãããéå¬ããã¾ãããChainerãæä¾ããPreferred Networksã¨ãAzureã¯ã©ã¦ããæä¾ããMicrosoftã«ãããã¨ã³ã¸ãã¢ã³ãã¥ããã£Deep Learning Labãä»åã¯ãèªç¶è¨èªå¦çãåæé³å£°ãªã©ãé³å£°ã»è¨èªÃ深層å¦ç¿ã®ææ°äºä¾ãç¥è¦ãçºè¡¨ãã¾ããããã¬ã¼ã³ãã¼ã·ã§ã³ã深層å¦ç¿ã«åºã¥ãããã¹ãé³å£°åæã®æè¡ååãã«ç»å ´ããã®ã¯ããã¤ã¯ãã½ãããã£ããããã¡ã³ãæ ªå¼ä¼ç¤¾ã®æ²¢ç°æ ¶æ°ãèªèº«ã大å¦é¢çæ代ã«æãããç 究ãªã©ãå ã«ãé³å£°åææè¡ã®ææ°äºä¾ãç´¹ä»ãã¾ããã ãããªãã¼ã ã§é³å£°åæã·ã¹ãã ãæããã æ²¢ç°æ ¶æ°ï¼ä»¥ä¸ãæ²¢ç°ï¼ï¼ããã§ã¯ããã¤ã¯ãã½ãããã£ããããã¡ã³ãã®æ²¢ç°ããã深層å¦ç¿ã«åºã¥ãããã¹ãé³å£°åæã®æè¡ååãã¨é¡ãã¦çºè¡¨ãã¦ããã¾ãããããããé¡ããã¾
ã¶ã³ã¬ã³ãµã¼ãã¹çµäºã®ãç¥ãã ã¶ã³ã¬ã³ã¯2021å¹´3æ31æ¥ã§å¤åè¨é²ãå«ãå ¨ã¦ã®ãµã¼ãã¹ãçµäºãã¾ãã詳ããã¯ãã¡ã å¼ç¤¾ã§ã¯ãé·æéã®ãµã¼ãã¹æ®æ¥ãªã©ã®ããã©ãã¯ä¼æ¥åé¡ãã解決ããããã«ã社ä¼å ¨ä½ã«å¯¾ãã¦ããªã¢ãªãã£ãæã£ã¦ãã©ãã¯ãªå´åç°å¢ã®åé¡ãä¼ãããã¨èããä»åããã©ãã¯ä¼æ¥ã®å®æ ããããå®éã®ã¨ãã½ã¼ããåéããã¨ãããï¼ï¼ï¼åè¶ ã®æ¹ãããå¿åããã ãããªã¢ãªãã£ã®ããå¤æ°ã®ã¨ãã½ã¼ãããéãããã ããã¨ãã§ãã¾ããã ã©ã®ã¨ãã½ã¼ãããå¼ç¤¾ç·¨éé¨ãç®ãçããããªåã¾ãããã©ãã¯ä¼æ¥ã¨ãã½ã¼ãã°ããã§ããããä»åã¯ã大è³ã»å ¥è³ã¨ãã¦ä»¥ä¸ã®7件ãé¸åºãã¾ããã ä»ã®ã¨ãã½ã¼ããä»å¾ã¦ã§ããµã¤ããTwitterï¼@ZANRECOï¼ã§å ¬è¡¨ãã¦ããã¾ãã å¤§è³ ã社å¡ã¯æ¶èåãã1æ¥20æéã»ï¼ãæé£å¤ãå®è³ªæ給120åãéå´æ»ããã©ãã¯ã¨ãã½ã¼ãå¢æãã®æ®ºäººä¼æ¥ å®®åçã20代
æ¥æ¬ãªã¼ã¬ã«ãããã¯ã¼ã¯ãã4æ26æ¥ï½6æ10æ¥ã¾ã§åéãã¦ããããã©ãã¯ä¼æ¥ã¨ãã½ã¼ã大è³ããçºè¡¨ãã¾ããã1ä½ã«é¸ã°ããã¨ãã½ã¼ãã¯ãã1æ¥20æéã»3ã«æé£å¤ãå®è³ªæ給120åãã¨ãã壮絶ãªã¨ãã½ã¼ããæ稿ããå®®åçã®20代ç·æ§ããããã£ããããï¼ITã»æ å ±éä¿¡æ¥ï¼ã«æ±ºå®ãããã§ã¨ããããã¾ãï¼ï¼ï¼ã åéæã®ã¤ã¡ã¼ã¸ ããããã£ããããã®ã¨ãã½ã¼ãã®ãã¤ã¸ã§ã¹ãã¯ã以ä¸ã®éãã åºæ¬çµ¦ã¯æ£ç¤¾å¡ã§ãããªãã6ä¸9ååãæ¯æ¥8æããç¿æ4æã¾ã§å¤åã§ãããä¼ã¿ã¯ãæä¸ååææ¥ã®ååä¸ã®ã¿ã§ãæéå¤æå½ã¯1åãã§ã¾ããããªãã¨æ給æç®ã§ã120å代ã§ããä¸åº¦åºç¤¾ããã¨ãåç£ç¦ç¶æ ã§3ã¶æ帰ããªãäºãããã¾ããä¸åç£ä¼ç¤¾ã¨è¦å¯ããå¤ç¬æ»ãçããã¦å®¶ã«åæã«å ¥ããããããã¾ããã ãã å®éãéå´ã§ä½èª¿å´©ãã¦æ¬éãããæ¯ãå¼ãåã社å¡ããã¾ããã ã¾ããã社å ã§ã¯ãæ¥æ¬å½ã®æ³å¾ã¯é©ç¨ãããªã
8æ26æ¥ã復èéä¸ã«ãã岩æçæ®ä»£æã§ãéç³æµ·ä¸ä¿å®é¨ãã¢ã¯ãã®å¯æ¼å£ãç¾è¡ç¯é®æããããã¾ãæ±æ¥æ¬å¤§éç½ããã£ããã«ãæ´åå£ãããã¯ã«ããâå¯æ¼âãã¸ãã¹ãæ´»çºåã巨大ãªã·ãã®ã«æé·ãã¤ã¤ããã¨ãããæ½å ¥åæã«å®è©ã®ããã©ã¤ã¿ã¼ã»é´æ¨æºå½¦æ°ã解説ããã ï¼ãï¼ãï¼ å¯æ¼çã«ããã¦ããã¾ãé©å½ãã¨å¼ã°ããã»ã©äººæ°ãªã®ããä¸è¯æçã®é«ç´é£æã»ããã³ã§ããã èµ·çå¤ã¯2008å¹´ã®å京äºè¼ªã ã£ãã以éãä¸å½å¤§é¸ã§æ¥æ¿ã«éè¦ãæ¡å¤§ããé«é¨°ãåæµ·éã®å¯æ¼è ã¯ãã£ããã«ããã³æ¼ã¸ã¨è»¢æããã赤ãéãé»ã®3種é¡ããã£ã¦ãå¯æ¼ãããã®ã¯ä¸»ã«é»ããã³ã§ããããããä¹¾ç¥ãããã¨ãã12ä¸åã¨ããé«é¡ã§å£²ããã ç¾å¨ãçã®é»ããã³ã®è£ç¸å ´ã¯ãã4500åç¨åº¦ã¨ãããæ£è¦åã®æµéä¾¡æ ¼ã¨ã»ã¼å¤ãããªããä¸è¬çã«å¯æ¼åã¯æ£è¦åããå®ä¾¡ã ããããã³ã ãã¯ä¾å¤ãªã®ã ãç°¡åã«å¤§éã«ç²ãããã¤é«é¡ãªé»ããã³â¦â¦ä»¥éãå¯æ¼ã®
ãã©ã³ã¹ã§ãç°å¢ä¿è·å£ä½ãåååçºé»æã®ä¸ç©ºã«ããã¼ã³ãé£ã°ã建å±ã®å£ã«æ¿çªããã¦ãåçºã¯ãå¤é¨ããã®æ»æã«å¼±ãã¨è¨´ããã®ã«å¯¾ããé»åä¼ç¤¾ã¯ãå®å ¨æ§ã«å½±é¿ã¯ç¡ãã£ãã¨ãã¦ãããåçºã®å®å ¨æ§ãããã£ã¦åã³è°è«ã«ãªã£ã¦ãã¾ãã å ¬éãããæ åããã¯ãæ ç»ãã¹ã¼ãã¼ãã³ãã®ä¸»äººå ¬ã«æ¨¡ããããã¼ã³ãåçºã®ä¸ç©ºãé£è¡ãããã¨ãå£ã«ã¶ã¤ãã£ã¦å¢è½ããæ§åããããã¾ãã ã°ãªã¼ã³ãã¼ã¹ã¯ããã©ã³ã¹è°ä¼ããè¿ãåçºã®å®å ¨æ§ã«é¢ããå ±åæ¸ãçºè¡¨ããã®ãåã«ãåçºã¯å¤é¨ããã®æ»æã«å¼±ãã¨è¨´ãããã£ããã¨ãã¦ãã¦ãåçºã®å®å ¨æ§ãé«ããããæ±ãã¦ãã¾ãã ããã«å¯¾ãã¦ãã¸ã§åçºãéå¶ãããã©ã³ã¹ã®å¤§æé»åä¼ç¤¾ã¯ãæ½è¨ã®å®å ¨æ§ã«å½±é¿ã¯ç¡ãã£ããã¨ããããã§ãåçºã®ä¸ç©ºãªã©ã«æ°éã®ããã¼ã³ãå ¥ããã¨ãç¦ãããã©ã³ã¹ã®æ³å¾ã«åºã¥ãã¦ãè¦å¯å½å±ã«å訴ããæ¹éã§ãã ãã ãã©ã³ã¹ã§ã¯ãã°ãªã¼ã³ãã¼ã¹ã®ã¡ã³ãã¼ããããã¾ã§ã
æ·±å¤ã®æµ·å²¸ç·ãéç½ãå ãâæ¯å¹´ãæ¥ã«ãªãã¨å¯å±±æ¹¾ã§ããã¿ã«ã¤ã«ã®èº«æããã¨ããç¾è±¡ãè¦ããã¾ãããã¿ã«ã¤ã«ã¯ãµã ã深海ã«çæ¯ãã¦ããçç©ã§ãããï¼æï½ï¼æé ã«ããã¦æ°´é¢è¿ãã¾ã§ãã£ã¦ãã¦ãç£åµãã¾ãããã®å¾ã¾ãæµ·æ·±ãã¸ã¨æ»ãã®ã§ãããææãã®ãªãæ°æã®å¤ãæ¹åãè¦å¤±ã£ãã¤ã«ã誤ã£ã¦æµã«è¿ã¥ããæ³¢ã«ã¤ãã¾ã£ã¦æµã«æã¡ä¸ããããã¨ããã®ã§ããèªãã®ææã«åãã¦æ»ãéããã®ã«ã身æããã¨å¼ã°ããã®ã§ãããããã¿ã«ã¤ã«ã¨ãã¦ã¯ããããªãæ°æã¡ã§ãã£ã±ãã§ãããã ãã¦ãããã¾ã§ã®è©±ã¯ããã¾ã§ä¸èª¬ã«ããããç¾ä»£ã®ç§å¦ããã£ã¦ãã¦ãæªã ãã®çæ ãæããã«ããã¦ãã¾ãããããã«åºä¼ããã ãã§ã幸éãæµ·ãéãå ã§åãå°½ãããã¦ãããããªãããããã絶æ¯åçããæ®å½±ãå ¬éãã¦ããã®ã¯æ°äººã ãããã¨ã¯ç¹ãç·ãçãã«ãããããªåçã°ããã§ããããã®ç¾è±¡ãå°å ã®æ°èã§ã¯ãã³ãã³ç´¹ä»ããããã¨ãããã¾ããããå ¨å½ç
28æ³ã女ãæ´¾é£ç¤¾å¡ãç¬èº«ããã¤ç å ãã¦40ä¸åã»ã©ã®åéãããã å»å¹´ãããªãé å¼µã£ã¦åãã¦1æ¥11æéå´åã¨ãæ¯æ¥ãã¦ãã ãã®çµæãããããã®åå ¥ã¨å¼ãæãã«ããã¤ç ãçºçããã ãã¯ã¿ã¼ã¹ããããããããæ´¾é£å ããããªãå¤ãããã¨ã¨ãªã£ããã ä»åº¦ã¯æéãçãåãåå ¥ãããªãæ¸ã£ãã ã¾ããæ£è²¡ãããã¨ã§ã¹ãã¬ã¹ãçºæ£ãã¦ãããã¨ãããã ããããã®åå ¥ãå°½ããã©ãã©ãåéãå¢ãã¦ãã£ãã ãã¤ç ã®æ²»çããã¤ã¤ãå¿ è¦ä»¥ä¸ã®å¤åºãé¿ã㦠åºæ¥ãéã家ã§ãã£ããã¨èº«ä½ãä¼ããæ¹åã§é²ãã¦ããã ã ãããã®ã¾ã¾ã§ããã¯ãããªãã ãéã ã ãéãããã åéãããããã ã ä»ã®æ´¾é£å ã§ã¯åå ¥ã¢ããã¯è¦è¾¼ããªãã ã§ãããã人ãã¡ã ãä»äºã楽ã§ä½ããæ®æ¥ããªãã®ãå©ããã ã ããç°¡åã«è¾ãããã¯ãªãã å æ¥ãä»»ææ´çãä¾é ¼ããã ããã¦ãå¯æ¥ã¨ãã¦ãããããã£ããã¬ãã£ã¼ãå§ãããã é¢
ã¢ããã¼ã·ã§ã³ ãã¨ãã°ãããã表ãããã gist.github.com 表ã®å·¦ã®ã»ãã«ã¦ã¼ã¶ã¼å±¤ã®æ å ±ãå³ã®æ¹ã«ã¦ã¼ã¶ã¼å±¤ãã¨ã®ããã°ã¸ã®ã¢ã¯ã»ã¹çµè·¯ãæ¸ããã¦ããã ã©ã®ã¦ã¼ã¶ã¼å±¤ãã©ã®çµè·¯ã好ããç¥ãããã¨ããã ããã§ãããã¯ã¢ãã«ã¨ãã¦ãã¢ã½ã³åå¸ã使ã£ãéè² å¤è¡åå åå解ãèããã ï¼ãããã¯ã¢ãã«ã·ãªã¼ãº 6 GaP ï¼Gamma-Poisson Modelï¼ - StatModeling Memorandum ãªã©ãåç §ãï¼ ã¦ã¼ã¶ã¼å±¤ãææ¸ãã¢ã¯ã»ã¹çµè·¯ãåèªã«å¯¾å¿ããã ã¦ã¼ã¶ã¼å±¤ã®æ å ±ãæ¨ã¦ã¦ãè¡åãå解ãã¦ãã¾ãã®ã¯ããããããªãã ã¦ã¼ã¶ã¼å±¤ã®æ å ±ã説æå¤æ°ã¨ãã¦ãã¦ã¼ã¶ã¼å±¤ãã¨ã«ãããã¯ã®æ§æãå¤ãããããªã¢ãã«ã«ãããã ã¢ã㫠観測å¤ãè¡åã®ç© ã§è¿ä¼¼ãããã¨ãç®æãã¾ãã Y: 観測ãããå解ãããè¡å(Nè¡Kå) X: 観測ããã説æå¤æ°(Nè¡Jå)
æ¦è¦ åç°ç¿ã深層ãã¥ã¼ã©ã«ãããã®ç©å表ç¾çè«ã[3]ã¨ããè«æã®ä¸ã§ã(æµ ã)ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ããã¦ãããã¨ã¯ å対ãªãã¸ã¬ããå¤æ (ã®é¢æ£å)ã§ãããã¨ãããã¨ã解説ããã¦ãã¾ãï¼ ãã®è«æã§ã¯å ¥åãä¸è¬ã® $m$ 次å ã«ã¨ãï¼æ´»æ§åé¢æ°ã¨ã㦠ReLU ãã·ã°ã¢ã¤ãé¢æ°ãå«ãè¶ é¢æ°ã®ã¯ã©ã¹ã«å¯¾ãã¦çµæãä¸ãã¦ãã¾ãï¼ãï¼ãã®ã¶ãã¨ã¦ãé£ããã§ãï¼ 1 ããããããã§ï¼æ¬ç¨¿ã§ã¯ä¸ã®è«æã§ææ¡ããã¦ããããªã©ã¯ã«ãµã³ããªã³ã°ãã¨ããææ³ã æ´»æ§åé¢æ°ã¨ã㦠Gauss æ ¸ $\eta(x) = \exp(-x^2/2)$ (æ¥æ¸å°é¢æ°)ãç¨ãï¼ $m = 1$ 次å ã®å ´åã«éã£ã¦ 解説ãï¼ããã«ãã®æ°å¤å®é¨ããããã¨æãã¾ãï¼ (æ¬ç¨¿ãèªãåã«åç°å çã®ã¹ã©ã¤ã[2]ã«ç®ãéãã¦ãããã¨ããããããã¾ãï¼) 使ã£ããã® Python 3.6.0 Chainer v3.1.0 O
ä¼å¡äºæ¥é¨ã®å±±ä¸(@farmanlab)ã§ãã Androidã¨ã³ã¸ãã¢ã¨ãã¦ã¯ãã¯ãããã¢ããªã®éçºãæ å½ãã¦ãã¾ãã ä»åã¯Google I/O 2018ã§æ°ããçºè¡¨ãããML Kitãã¯ãã¯ãããã®ãã¼ã¿ã§å¦ç¿ããã¢ãã«ã使ã£ã¦æ¤è¨¼ãã話ããã¾ãã æ©æ¢°å¦ç¿ã¢ãã«ã®å©ç¨ã«ããã£ã¦ãç 究éçºé¨ã®èç°(@yohei_kikuta)ã®ååã®å ã§æ¤è¨¼ãè¡ãã¾ããã ããããã話ããå 容ãã¤ã¡ã¼ã¸ããããããã ã¯ãã¯ãããã®æçã»éæçãå¤å¥ããã¢ãã«ãåãããå®æ©ãã¢ããè¦ããã¾ãã ããã¯æçã¨å¤å®ããã確çãfoodãæçã§ã¯ãªãã¨å¤å®ããã確çãnon-foodã¨ããã©ãã«ã®ã¹ã³ã¢ã§è¡¨ç¤ºããã¦ãããã¢ã§ãã (é)æçç»åã«ããã¦(non-)foodã®ã©ãã«ã®ã¹ã³ã¢ã大ãããªãæ£ããå¤å¥ã§ãã¦ãããã¨ãåããã¾ãã ã¢ãã«ã¯ MobileNetV2 tensorflow-gpu==1
ã¨ã¦ãå人çãªè©±ã§ãããããæè¿ã§èªåèªèº«ã®ãã©ã¤ãã·ã¼æèã®é«ã¾ããæãã¦ããã©ã¦ã¶ã®è¨å®ãè¦ç´ãæ©ä¼ãããã¾ãããè¦ç´ããã®ã¯Cookieã®è¨å®ã§ã許å¯ãããã¡ã¤ã³ã«ããCookieãè¨æ¶ããªãããã«ãã¾ãããè¨å®å¤æ´ã«ããããç¨åº¦ã®ä¸ä¾¿ã¯è¦æãã¦ãã¾ãããã¨ã¯ãããã¾ããããããååã¢ã¯ã»ã¹ã®æã®ã¢ã¼ãã«ãä½åº¦ãåºãããã«ãªãã¨ãããã°ã¤ã³ã§ããªããªãã¨ãããã®ãããããªã¨æã£ã¦ãã¾ããã ãããå®éã¯ãæªãæå³ã§æå¾ ãè£åããããã¨ã«ãªãã¾ããã Cookieãç¡å¹ãªã ãã§ãâå ¨ãâåããªããªã£ã¦ãã¾ãã¦ã§ããµã¤ããã¦ã§ãã¢ããªããæ¬å½ã«ãããããããã¨ã«æ°ã¥ããã®ã§ãã å ¨ãåããªããªã£ã¦ãã¾ãåå ã¯åç´ï¼å¾è¿°ï¼ã ã£ãã®ã§ãããã¡ãã£ã¨ãã対å¦ã§ç°¡åã«ç´ãããã¨ãªã®ã«ããµã¤ãå ¨ä½ãä¸å使ãç©ã«ãªããªããªã£ã¦ã¦ããã£ãããªãï¼ï¼ãã¨æãã¾ããã ããã³ãã¨ã³ãã®æ³å®å¤ ã¦ã§ããµã¤ã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}