Machine Learning (ML) methods have been proposed in the academic literature as alternatives to statistical ones for time series forecasting. Yet, scant evidence is available about their relative performance in terms of accuracy and computational requirements. The purpose of this paper is to evaluate such performance across multiple forecasting horizons using a large subset of 1045 monthly time ser
ãã®è¨äºã¯ã以ä¸ã®@icoxfog417ããã«ããåé¡æèµ·ã«åãããã¡ãã£ã¨ããå®é¨ãã¾ã¨ãããã®ã§ãã æç³»åäºæ¸¬ã®åé¡ã«ããã¦ãæ©æ¢°å¦ç¿ã®ã¢ãã«ããæ¢åã®çµ±è¨ã¢ãã«(ARMAã¢ãã«ãªã©)ã®æ¹ãäºæ¸¬ç²¾åº¦ã«ããã¦åªè¯ãªçµæãåºãã¨ããç 究ããã¼ã¿ã¸ã®é©å=äºæ¸¬ç²¾åº¦ã®åä¸ã§ã¯ãªããã¨ãå®é¨ã§ç¤ºãã¦ãããæ©æ¢°å¦ç¿ã®ç 究ã§ã¯çµ±è¨ã¢ãã«ã¨ã®æ¯è¼ãå ¥ããã¹ãã¨ããæè¨ããã¦ããã https://t.co/jboGhYSX6Eâ piqcy (@icoxfog417) September 16, 2019 ãã®ç¹ã«ã¤ãã¦åã¯ãããªã³ã¡ã³ããããã®ã§ããã ã ãã¶ä»¥åãããä¸è¬çãªæç³»åãã¼ã¿äºæ¸¬ã®åé¡ã¯åä½æ ¹éç¨ãå£ç¯èª¿æ´ãªã©éå®å¸¸éç¨ã¨ã®æ¦ããªã®ã§ãæ¬è³ªçã«å®å¸¸éç¨ãæ³å®ããæ©æ¢°å¦ç¿ææ³ã§ã®äºæ¸¬ã¯è¨éæç³»ååæãªã©éå®å¸¸éç¨ãèæ ®ããå¤å ¸çãªã¢ãã«ã«ããäºæ¸¬ã«ã¯åã°ãªããã¨è¨ãç¶ãã¦ãããã©ããã£
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}