2024-11-11 ãAzureãBastionãå©ç¨ãã¦ãã©ã¤ãã¼ãIPãä»ããã»ãã¥ã¢ãªVMæ¥ç¶ãå®ç¾ãããåºæ¬ç¡æã

2024-11-11 ãAzureãBastionãå©ç¨ãã¦ãã©ã¤ãã¼ãIPãä»ããã»ãã¥ã¢ãªVMæ¥ç¶ãå®ç¾ãããåºæ¬ç¡æã
This document discusses using sliding windows to aggregate streaming data in MapReduce. It proposes buffering input tuples in mappers until a window is full, then emitting the aggregate. Combiners and reducers combine partial aggregates across windows. Window ranges are initialized and updated during merging to remove outdated data and handle late arrivals. This approach allows streaming aggregati
Hadoopã¢ããã³ãã»ã«ã¬ã³ãã¼ã®å¤åæçµæ¥ã®ã¯ãã ãã£ãããªãã§ãæ¥å¹´ã®äºæ³ã§ããã¦ã¿ãããã¨ã æ¥æ¬ã®è©±ã§ããä¸çã®ãã¨ã¯ãããããã¾ãããæ¬å½ã®ãã¨ã¯ãæ¥æ¬ã«ã¯ä¼ãããªãï¼è¡¨åãã®è©±ã¯ã¨ããããç¾ç¶ã§ã¯VCãããã®å¤éã®æ¹ãçºè¨åãããã¨æãããåããã§ãããã®è¾ºã®æ£ç¢ºãªæ å ±ã¯ä¼æãã¦ãæ°ããã¾ããï¼ã¨æãã®ã§ãã¨ã¯ãããæ¥æ¬ã®Hadoopãã¼ã±ããã¯ããããªãããã£ã¦ããï¼ã¨ããããããã£ã¦ããªãã¨ã¾ããï¼æãã¿ãããªã®ã§ã»ã»ã»åæã«ãæ¥å¹´ã®Hadoopã¨ãäºæ³ãã¾ããå¤ãããç¼ãèãããã¾ãã 1 大éãã¼ã¿å¦çã§ã®ããã¡ã¯ãå ã»ããããWebç³»ã§ã¯ã¤ãã£ã¦ããªãã¨ããã¯ä¸ç¤¾ããªããªã ç¹ã«ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã¨ã³ã¸ã³ãããã¯ãããæ®éã«å®è£ ãã¦ä½¿ãããã ãããã以ä¸ã®ãã®ã¯åºãªããéè¨å¦çã¨æ¨è«ããã¾ãå©ç¨ããã¬ã³ã¡ã³ãã¼ã·ã§ã³ã¨ã³ã¸ã³ï¼ã¨ãã®äºæµï¼ãå¾æ¥ããã®ãã£ã«ã¿ãªã³
大è¦æ¨¡ãã¼ã¿ã®åæ£å¦çãæ¯ããJavaã½ããã¦ã§ã¢ãã¬ã¼ã ã¯ã¼ã¯ã§ãããããªã¼ã½ããã¦ã§ã¢ã¨ãã¦é å¸ããã¦ãããApache Hadoopãããã®ä½è ãã°ã»ã«ãã£ã³ã°ï¼Doug Cuttingï¼ããããCloud Computing World Tokyo 2011ãï¼ãNext Generation Data Center 2011ãã«ããã¦ãApache Hadoop: A New Paradigm for Data Processingãã¨ããè¬æ¼ããã¦ããã®ã§èãã«è¡ã£ã¦ãã¾ããã æºå¡ã®å®¢å¸ã çæ§ãåã«ãã¦è¬æ¼ã§ãããã¨ã大å¤å æ ã«æã£ã¦ããã¾ãããApache Hadoopãã«ã¤ãã¦çæ§ã«ä¼ãã¦ããã¾ãããããã¯ã¾ãã«ãã¼ã¿å¦çã®æ°ããªããã©ãã¤ã ãæä¾ãããã®ã§ã¯ãªããã¨ç§ã¯æã£ã¦ããã¾ãã ã¾ãã¯ç°¡åã«èªå·±ç´¹ä»ãããã¦ããã ãã¾ããããç§ã¯25å¹´ã«æ¸¡ã£ã¦ã·ãªã³ã³ãã¬ã¼ã§ä»
ãããã®æã®è©±é¡ã¯åºå°½ãããæãããã¾ãããæè¿Hadoopã«ã¤ãã¦èãããã¨ãå¤ãã®ã§ãã¨ã³ããªã«ãã¦ã¿ã¾ãããªããããã§ã¯ãã¼ã·ãã¯ãªMapReduce+HDFSã®ãã¨ãHadoopã¨å¼ã¶ãã¨ã«ãã¾ãã Hadoopã¨ã¯Hadoopã¨ã¯è¨ããã¨ç¥ããGoogleã®MapReduce/GFSã®ãªã¼ãã³ã½ã¼ã¹ã®ã¯ãã¼ã³ã§ããMapReduceã§ã¯ããã°ã©ãã¯Mapã¨Reduceã¨ãã2ã¤ã®é¢æ°ãæ¸ãã ãã§ã並ååæ£å¦çããããã¨ãã§ãã¾ããããã¯(1) ãã¼ã¿ãå®éã«æã¤ãã·ã³ã«ããã°ã©ã ãé å¸ãã (2) Mapã¨Reduceãã¤ãªãShuffleãã§ã¼ãºã§ãã¼ãã°ã«ã¼ãåãã¦ã½ã¼ãããã(3) é害æã®ãã§ã¼ã«ãªã¼ãã¼ãã¬ããªã±ã¼ã·ã§ã³ãã¨ãã£ãå¦çããã¬ã¼ã ã¯ã¼ã¯å´ãåãæã¤ãã¨ã«ãã£ã¦ãããã°ã©ãå´ã®è² æ ãæ¸ãããã®ã§ããGFSã«å¯¾å¿ããHDFSã«ã¯ãã¡ã¤ã«ãã¯ã©ã¹ã¿ã«åæ£ãã¦ä¿å
æ¥çããã ã®ã¨ã³ã¿ã¼ãã©ã¤ãº Hadoop ä¼æ¥ Cloudera ã«å ¥ç¤¾ãã¾ãã http://www.cloudera.co.jp/ ä»å¹´ã®6æã«ããå¹³æï¼ï¼å¹´åº¦ ç£å¦é£æºã½ããã¦ã§ã¢å·¥å¦å®è·µäºæ¥å ±åæ¸ãã¨ããããã¥ã¡ã³ã群ãçµç£çããå ¬è¡¨ããã¾ããã ãã®ãã¡ã®ä¸ã¤ã«ãNTTãã¼ã¿ã«å§è¨ãããHadoopã«é¢ããå®è¨¼å®é¨ã®å ±åæ¸ãããã¾ããã®ã§ãä»æ´ãªããèªãã§ã¿ããã¨ã«ãã¾ããã Hadoopçéã®äººã¯ããã¿ããªã¨ã£ãã«èªãã§ãã®ããããã¾ãããã©ã http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf ãé«ä¿¡é ¼ã¯ã©ã¦ãå®ç¾ç¨ã½ããã¦ã§ã¢éçºï¼åæ£å¶å¾¡å¦çæè¡çã«ä¿ããã¼ã¿ã»ã³ã¿ã¼é«ä¿¡é ¼åã«åããå®è¨¼äºæ¥ï¼ãã¨ãã
ãã¸ãã¹ãã¼ã¿ãåæãããã¸ãã¹ã¤ã³ããªã¸ã§ã³ã¹ï¼BIï¼åéã®æ°ããªãã©ãããã©ã¼ã ã¨ãã¦æ³¨ç®ããã¦ããHadoopãHadoopã§ã¯ãã©ã®ãããªãã¼ã¿åæãå¯è½ãªã®ã§ããããï¼ ç¾å¨ãHadoopãã¸ãã¹ã®ç½å¼å½¹ã§ããClouderaã®Jeff Hammerbracheræ°ããHadoopã§ãã¼ã¿åæãå¯è½ãªãã¸ãã¹ä¸ã®èª²é¡ã示ããã10 Common Hadoop-able problemsãï¼Hadoopåå¯è½ãª10ã®ä¸è¬ç課é¡ï¼ã¨é¡ãããã¬ã¼ã³ãã¼ã·ã§ã³ãå ¬éãã¦ãã¾ãã Hadoopã«ã¨ã£ã¦å¾æãªå¦çã¨ã¯ãè¤éã§è¤æ°ã®ãã¼ã¿ã½ã¼ã¹ãããªã大éã®ãã¼ã¿ã®åæã§ãããããããããå¦çã®ä¸¦åå®è¡ã«ãã£ã¦å®ç¾ãããã¨ã§ãã å¾æ¥ã¯ããã¼ã¿ããã¾ãã«è¤éã ã£ããè¨å¤§ã ã£ããã«ãè¨ç®æéãã³ã¹ããªã©ã®çç±ã§å®ç¾ãé£ããã£ãå¦çã§ããHadoopã«ããä½ã³ã¹ãåãè¨ç®æéã®ç縮ãé«ãæè»æ§ãªã©
ãç¥ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}