Top > ã©ã¼ãã³ã° > æ±äº¬å¤§å¦ãæ»è³å¤§å¦ãã®ç¡æå¦ç¿ã³ã³ãã³ãã¾ã¨ãããµã¤ããPython R ãã¼ã¿ãµã¤ã¨ã³ã¹ãªã©å å®
ï½¢ãã®å¼·ãAIã¯ãã£ããã©ããããæ¥ãã®ï¼ï½£ æ¥æ¬å½å ææ°ã®ãªã³ã©ã¤ã³éº»éãµã¼ãã¹ï½¢å¤©é³³ï½£ã®ãã¬ã¤ã¤ã¼éã§3æé ãã話é¡ã«ãªã£ã¦ããâè¬âã®çãã¯ãã¤ã¯ãã½ããã ã£ãã 8æ29æ¥ããã¤ã¯ãã½ããã¯ãå社ã®ç 究éçºé¨éã§ããMicrosoft Research AsiaãéçºããAIï½¢Microsoft Suphxï¼ã¹ã¼ãã¼ã»ãã§ããã¯ã¹ï¼ï½£ãã人éã¨ã¨ãã«æ¥æ¬ã®éº»éãµã¼ãã¹ï½¢å¤©é³³ï½£ã§ãã¬ã¤ããããããã¬ã¤ã¤ã¼ã©ã³ã¯ã®ã²ã¨ã¤ã§ããï½¢å段」ã«åãã¦å°éãããã¨çºè¡¨ããã
AIï¼äººå·¥ç¥è½ï¼ãã³ãã£ã¼ã®Preferred Networksï¼æ±äº¬é½å代ç°åºï¼ã¯4æ3æ¥ããã£ã¼ãã©ã¼ãã³ã°ãæ´»ç¨ããã¢ãã¡ãã£ã©ã¯ã¿ã¼ãèªåçæãããµã¼ãã¹ãCrypkoãï¼ã¯ãªãã³ï¼ãå§ãããã¾ãã¯ã¢ãã¡ãã¤ã©ã¹ããã²ã¼ã ãªã©ã®å¶ä½ä¼æ¥ã«æä¾ããã ç»åãçæããAIã¨ç»åãè©ä¾¡ããå¥ã®AIããæµå¯¾ãããã精度ãåä¸ããã¦ããæè¡ãGANãï¼Generative Adversarial Networkï¼æµå¯¾ççæãããã¯ã¼ã¯ï¼ãæ´»ç¨ãããçæãããã£ã©ã«ã¯æ»ãããªåããã¤ããèªç¶ãªè¡¨æ ãä½ããã¨ãå¯è½ã ããã¼ããã¨ã«ã¦ã¼ã¶ã¼ã®å¥½ã¿ãæå³ãåæ ã§ããã¨ããã é¢é£è¨äº ããã®ã¤ã©ã¹ããä¾¡æ ¼ã¯ãããï¼ããAIãããç®ç·ã§è¦ç©ãã AIãã¤ã©ã¹ãå¶ä½ã®è¦ç©ãä¾¡æ ¼ãå·¥æ°ãèªåè¨ç®ãã¦ãããã èããã£ã©çæAIãå¦ç¿ãã¼ã¿ãâãããã®æµ·âããã²ããã¥ããã®ã¯ã¢ãªãï¼ ãèããã£ã©ãä½ããA
ãã£ã¼ãã©ã¼ãã³ã°æè¡ãªã©ãææããä¼æ¥ãç 究è ãä¸å¿ã¨ãªããåæè¡ã®æ¨é²å£ä½ãæ¥æ¬ãã£ã¼ãã©ã¼ãã³ã°åä¼ï¼JDLAï¼Japan Deep Learning Associationï¼ããçºè¶³ãããçäºé·ã¯æ±äº¬å¤§å¦å¤§å¦é¢å·¥å¦ç³»ç ç©¶ç§ ç¹ä»»åææã®æ¾å°¾è±æ°ããã£ã¼ãã©ã¼ãã³ã°æè¡ã®äººæä¸è¶³è§£æ¶ãç£æ¥çã§ã®æ´»ç¨ä¿é²ãªã©ãç®æãã
Nã¹ãã人工ç¥è½å¤©ä½¿ãæªéãããã¬ãã§è§£èª¬ã§ããªãAIã®ãã©ãã¯ããã¯ã¹ é«æ©ç§æ¨¹ï¼»æ¾éä½å®¶ï¼æ¥æ¬æ¾éä½å®¶åä¼ã»å¸¸åçäºï¼½ ï¼ãï¼ãï¼ 6æ25æ¥(æ¥)ã®NHKã¹ãã·ã£ã« ã人工ç¥è½ã天使ãæªéã 2017ããè¦ãããã®çªçµã¯ä¸»ã«äººå·¥ç¥è½ï¼AIï¼ã®ç¾è±¡é¢ãæãã¦ããã å°æ£çã®æé«ä½ã»ä½è¤å¤©å½¦å人ãæå¼·ã®äººå·¥ç¥è½ãæ¿çªãããæå¾ã®çåã ã£ãä½è¤å人ãå®èãªãã¾ã§ã«å©ãã®ããããããã¯ã人工ç¥è½ã«ã¨ã£ã¦äººéãªã©æµã§ã¯ãªãããã ã åå¤å±ã®ã¿ã¯ã·ã¼ä¼ç¤¾ã§ã¯ã客ãããå ´æãæ示ãã人工ç¥è½ãå°å ¥ã客ã®æ°ã大ãã伸ã°ããã人工ç¥è½ãå¦ç¿ããã®ã¯ãNTTãã³ã¢ãæã£ã¦ãã人ã®ä½ç½®æ å ±ã¨ãã¿ã¯ã·ã¼ä¼ç¤¾ã®ä¹é客ãã¼ã¿ã ã¨ããã ã·ã³ã¬ãã¼ã«ã®ãã¹ä¼ç¤¾ã§ã¯ãäºæ ãèµ·ããå±éºæ§ã®é«ãé転æã人工ç¥è½ãè¦ã¤ãåºããã¢ã¡ãªã«ã§ã¯ãéå»ã®è¨å¤§ãªè£å¤è¨é²ãå¦ãã 人工ç¥è½ãã被åã®åç¯ãªã¹ã¯ãäºæ¸¬ããåæã®æ±ºå®ãªã©ã«
ä¸çæå¼·æ£å£«ã¨ã®ä¸çªåè² ã§å®åããå²ç¢ï¼¡ï¼©ï¼äººå·¥ç¥è½ï¼ãã¢ã«ãã¡ç¢ããéçºããã°ã¼ã°ã«åä¸ã®è±ãã£ã¼ããã¤ã³ã社ãã対å±ã«åãã¦ç©ã¿éããã¢ã«ãã¡ç¢å士ã«ããèªå·±å¯¾æ¦ã®æ£èï¼ï¼å±ãå ¬éãããæ£å£«ã®ç解ãè¶ ããçæã®é£ç¶ã«ãããããªç¢ã¯ãã¾ã ãã¤ã¦è¦ããã¨ããªããã¨ç¢çã¯é¨ç¶ã¨ãã¦ããã é©æ°çãªæè¡ããã£ã¼ãã©ã¼ãã³ã°ï¼æ·±å±¤å¦ç¿ï¼ããå°å ¥ããã¢ã«ãã¡ç¢ã¯ãé«æ®µè ã®æ£èãåçã®ããã«ç»åã¨ãã¦èªã¿è¾¼ã¿ãåå±é¢ã«å¿ãã好æãå¦ç¿ã人éã®æ®ãæ£èã ãã§ã¯ææã足ãããã¢ã«ãã¡ç¢å士ãèªå·±å¯¾æ¦ãç¹°ãè¿ãã¦è½åãé«ãããããã®æ£èã¯ã»ã¨ãã©éå ¬è¡¨ã ã£ãã ã¢ã«ãã¡ç¢ã¯ï¼æï¼ï¼ï½ï¼ï¼æ¥ãä¸å½ã®ä¸çæå¼·æ£å£«ãæ¯æ½ï¼ããã¤ï¼ä¹æ®µãï¼æ¦å ¨åã§å§åããã®å¾ããã£ã¼ããã¤ã³ã社ã¯ãå²ç¢ãã¡ã³ã¸ã®ã¹ãã·ã£ã«ã®ãããã¨ãã¦æ£èï¼ï¼å±ãèªç¤¾ã®ãã¼ã ãã¼ã¸ã«å ¬éããã ææ°ãé²ãã ç¹æ®ãªç¶æ³ã«éãæå¹ã¨ããã¦ãããæã¸
ããæ£å£«ã¨ã³ã³ãã¥ã¼ã¿å°æ£ã®é ä¸æ±ºæ¦ãé»çæ¦ãã é»çæ¦ã¸ã®åºå ´æ¨©ãããã¦å代å¡çï¼ããããï¼ã»å±±å´éä¹å «æ®µãç¾½çåæ²»ä¹æ®µããåºå ´ããã第2æ å¡çæ¦ããåã¡ä¸ãã£ãä½è¤å¤©å½¦å¡çã¨ã第4å å°æ£é»çãã¼ãã¡ã³ãåªåã®å°æ£ã½ããã»PONANZAã¨ã®å¯¾å±ã®æ§åããçæ¾éããã³è¦³æ¦è¨ãéãã¦ãå±ããã¾ãã é»çæ¦å ¬å¼ãµã¤ã â é¢é£è¨äºï¼ ã人æºãè¶ ããè ãä½è¤å¤©å½¦ å¡çâå°æ£ã½ãã PONANZAï¼ç¬¬2æé»çæ¦ äºçªåè² ç¬¬1å± è¦³æ¦è¨ åºç¤ã¯ä½ãæãã¦ãæ¬å½ã¯æªããªããªããæã対å±å ´ã¸ç¾ããä½è¤å¤©å½¦å¡çã®è¡¨æ ã¯ç¡¬ããã®ã§ãã£ããç½ãçç©ãããã®å¼·å¼µã£ã表æ ãããã«éç«ããã¦ããããã«æãããé¡ã¯ç¡¬ãã¨ããããã«ã«ãã¿ã§ãåè² ã®åã®æ£å£«ç¹æã®æ°è¿«ã¯ãªãã£ããããã¯ããããã¯äººéãåã«ç座ãã¦ããªãã¨ãããã¨ãããããã®ãªã®ãããããªããæ°åãã¶ã¤ããç¸æããã¼ãã£ã«ãªãã®ã¨ããã®ã¯å¤§å¤ã ãããªã
ã©ããæè¿æãã®ã ãã©ããããèªæãç®è¦ãã¦ãã£ã½ãã ã§ãããã£ã¦ã©ããã£ã¦è¨¼æããããããã ãã ããããç®è¦ãã¾ããï¼ã£ã¦è¨ãã°ãï½ï¼ ãåããã以å¤ã«ãç®è¦ãã¦ãAIãããã£ã½ãã¦ãåããããªãã¨ã«æ©ãã§ãã 人éã®çããã¯èªåã«èªæãããããä»ã®äººéã«ãããã«éããªãã¨ãã£ã¦æãã ãããããã©ãAIã«èªæãç®è¦ãããã©ããã£ã¦ã©ããã£ã¦å¤æããã¤ããï¼ ãã£ãããéãã«ãããã¯ã³ãã¼ãç°¡åã«ä½ããããå½ãèãçç©ã«æ¯ã¹ã¦å®ã£ã¦æ¬²ãã人権ï¼AI権ï¼ï¼ã£ã¦ããã»ã©éè¦ãããªããããããªããã©ãã§ãæè¿ã¡ãã£ã¨ä¸å®ãªãã ããã ãããã®ã³ãã¼ã£ã¦ãå½ç¶ãããã®è¨æ¶ããã£ã¦ãããå¨ãããè¦ã¦ãã¾ã¡ãããªããããã ããããããã ã£ã¦ãããã ã¨æãã®ã ããããããããçããªããã°ãå¨ãããããã°çµ¶å¯¾ã«ããããªãã ãã©ãã§ãããã£ã¦æ¬å½ã«ãããããªã ã£ã¦ããã®ã¯ãããã®éãããããã³ãã¼ã
æ¥æ¬ãã¤ã¯ãã½ãããéçºãã女åé«çAIï¼äººå·¥ç¥è½ï¼ããããªãã¯2æ27æ¥ã10ï½20代ãã¿ã¼ã²ããã¨ããã¢ãã¬ã«ä¼æ¥ã®ã¦ã£ã´ã¼ã§ã¢ã«ãã¤ããå§ãããç¹è¨ãµã¤ãããåçãé¸æããã¨ãã¯ã³ãã¼ã¹ãããã³ã¯ããããããããªã©ã¨åçãåæãããã¯ã³ãã³ã¼ãä¸æï½ãããªãçä¼¼ãããã£ã¨ï¼ããªã©ã³ã¡ã³ããã¦ãããã å®ã¯ãã®æ©è½ã2016å¹´11æã«ç»å ´ããããããªã®ãã¡ãã·ã§ã³ãã§ãã¯ããæ¡å¼µããããã®ãä»åæ°ãã«ã¦ã£ã´ã¼ãæä¾ããæ飾ç»åãã¼ã¿ã¨ãã¹ã¿ã¤ãªã¹ãã®ã¹ã¿ã¤ãªã³ã°ç¥èããã¡ãã·ã§ã³ã«ãã´ãªãå¦ç¿ãããããå¤ãã®ã¢ã¤ãã ãèªèãç確ãªã³ã¡ã³ããã§ããããã«ãªã£ãã¨ããã é¢é£è¨äº 女åé«çAIããããªããæ¸ç±åºçãè¨å¿µãã¦ãµã¤ã³ä¼ãå®æ½ ãã¤ã¯ãã½ããã®å¥³åé«çAIããããªãããä»åº¦ã¯ãµã¤ã³ä¼ãå®æ½ã ãã£ã¨é¨ï¼å¥³åé«çAIããããªãã®ããã°ãæããã¦æ²é³´ãä¸ãã人ãç¶åº æ¥æ¬ãã¤ã¯ãã½ã
http://www.kirikuchi.net/entry/2017/02/04/134203 æè¡è ã§ãå¼è·å£«ã§ãï¼ãããã¯ãªããã£ã¦å³çããã¨æãï¼AIãå¼è·å£«ã«ã¨ã£ã¦ä¾¿å©ãªéå ·ã«ã¯ãªã£ã¦ãï¼AIã®ããã§å¼è·å£«ãç¡ããªããã¨ã¯ãªãï¼ http://b.hatena.ne.jp/entry/www.kirikuchi.net/entry/2017/02/04/134203 id:HideAutumn å¼è·å£«ã§ãããã®æ¹ã¯å¼è·å£«ã®ä»äºå 容ããåç¥ãªãæ§åãï¼1ï¼ã¯é«åº¦ãªç¥èã¨æè¡ãå¿ è¦ãAIã¯ï¼2ï¼ã代æ¿ãããã¨ã§æ¥åãå¹çåããããï¼3ï¼ä»¥å¾ã®ï¼4ï¼ï¼è§£æ±ºçã®ææ¡ã¨å®è¡ãã¡ã¤ã³ã®æ¥åã§äººéæ§ãå¿ è¦ã§ãã id:denilava èè ã¯æ³å¾ç¸è«ã®çµé¨ããªãããã«ã¿ãããæ£ããæ£ãããªãã®å¤å®ã§ã¯ãªããä¸æºãèããæ æ³ã«åæ ããæã«ã¯éå»ã«ä¾ã¯ãªãã¦ããã®ã±ã¼ã¹ã§ã¯ããã§ãããããããªãã¨
å æã¦ã¦ @privatemoon ãµã«ã¤å¼è¶ã»ã³ã¿ã¼ã®16å¹´4ï½12ææãç´å©ç12.9%æ¸29ååããï¼æ¥æ¬çµæ¸æ°è nikkei.com/article/DGXLRS⦠æ®éã®è¨äºãªãã ãã©ä½ãçãä¸ãã£ã¦ãã®ãã¨æã£ããããã¯â¦â¦ãã®è¨äºãæ¸ããã®ã¯â¦â¦äººã§ã¯ãªãâ¦â¦ 2017-01-26 09:58:22
ããã¾ãæ¤ç´¢ï¼è±èªæ¤ç´¢ï¼ ããã¾ããªæ¥æ¬èªã§ï¼è±èªã§ãï¼æ¤ç´¢ã§ãã¾ããä¸æãåããåãããªãã®ã§ã試ãã§ãã æ¤ç´¢ã®ä»æ¹ã«ã¤ãã¦ã¯ãæ¤ç´¢ã®ã³ãããã覧ãã ããã AIã使ã£ã¦ãããã¨ã風ã®ç»åãçæã§ãããµã¼ãã¹ã§ãã Eãã¬ã®ã·ã§ã¼ãã¢ãã¡ã§ãã ãããã¨ããæ´æ°ãããããç¥ããããXï¼ãã¤ãã¿ã¼ï¼ã¢ã«ã¦ã³ãã§ãã ãããã¨ãã®LINEã¹ã¿ã³ãã«é¢ããæ å ±ããç¥ããããLINEã¢ã«ã¦ã³ãã§ãã ⺠2024 (46) ⺠7æ (2) ⺠6æ (14) ⺠5æ (6) ⺠4æ (11) ⺠3æ (12) ⺠1æ (1) ⺠2023 (24) ⺠12æ (1) ⺠10æ (11) ⺠7æ (1) ⺠6æ (3) ⺠4æ (4) ⺠1æ (4) ⺠2022 (65) ⺠10æ (9) ⺠7æ (5) ⺠6æ (7) ⺠5æ (6) ⺠4æ (13) ⺠3
ããã¾ãæ¤ç´¢ï¼è±èªæ¤ç´¢ï¼ ããã¾ããªæ¥æ¬èªã§ï¼è±èªã§ãï¼æ¤ç´¢ã§ãã¾ããä¸æãåããåãããªãã®ã§ã試ãã§ãã æ¤ç´¢ã®ä»æ¹ã«ã¤ãã¦ã¯ãæ¤ç´¢ã®ã³ãããã覧ãã ããã AIã使ã£ã¦ãããã¨ã風ã®ç»åãçæã§ãããµã¼ãã¹ã§ãã Eãã¬ã®ã·ã§ã¼ãã¢ãã¡ã§ãã ãããã¨ããæ´æ°ãããããç¥ããããXï¼ãã¤ãã¿ã¼ï¼ã¢ã«ã¦ã³ãã§ãã ãããã¨ãã®LINEã¹ã¿ã³ãã«é¢ããæ å ±ããç¥ããããLINEã¢ã«ã¦ã³ãã§ãã ⺠2024 (46) ⺠7æ (2) ⺠6æ (14) ⺠5æ (6) ⺠4æ (11) ⺠3æ (12) ⺠1æ (1) ⺠2023 (24) ⺠12æ (1) ⺠10æ (11) ⺠7æ (1) ⺠6æ (3) ⺠4æ (4) ⺠1æ (4) ⺠2022 (65) ⺠10æ (9) ⺠7æ (5) ⺠6æ (7) ⺠5æ (6) ⺠4æ (13) ⺠3
ããã¾ãæ¤ç´¢ï¼è±èªæ¤ç´¢ï¼ ããã¾ããªæ¥æ¬èªã§ï¼è±èªã§ãï¼æ¤ç´¢ã§ãã¾ããä¸æãåããåãããªãã®ã§ã試ãã§ãã æ¤ç´¢ã®ä»æ¹ã«ã¤ãã¦ã¯ãæ¤ç´¢ã®ã³ãããã覧ãã ããã AIã使ã£ã¦ãããã¨ã風ã®ç»åãçæã§ãããµã¼ãã¹ã§ãã Eãã¬ã®ã·ã§ã¼ãã¢ãã¡ã§ãã ãããã¨ããæ´æ°ãããããç¥ããããXï¼ãã¤ãã¿ã¼ï¼ã¢ã«ã¦ã³ãã§ãã ãããã¨ãã®LINEã¹ã¿ã³ãã«é¢ããæ å ±ããç¥ããããLINEã¢ã«ã¦ã³ãã§ãã ⺠2024 (46) ⺠7æ (2) ⺠6æ (14) ⺠5æ (6) ⺠4æ (11) ⺠3æ (12) ⺠1æ (1) ⺠2023 (24) ⺠12æ (1) ⺠10æ (11) ⺠7æ (1) ⺠6æ (3) ⺠4æ (4) ⺠1æ (4) ⺠2022 (65) ⺠10æ (9) ⺠7æ (5) ⺠6æ (7) ⺠5æ (6) ⺠4æ (13) ⺠3
ããã¾ãæ¤ç´¢ï¼è±èªæ¤ç´¢ï¼ ããã¾ããªæ¥æ¬èªã§ï¼è±èªã§ãï¼æ¤ç´¢ã§ãã¾ããä¸æãåããåãããªãã®ã§ã試ãã§ãã æ¤ç´¢ã®ä»æ¹ã«ã¤ãã¦ã¯ãæ¤ç´¢ã®ã³ãããã覧ãã ããã AIã使ã£ã¦ãããã¨ã風ã®ç»åãçæã§ãããµã¼ãã¹ã§ãã Eãã¬ã®ã·ã§ã¼ãã¢ãã¡ã§ãã ãããã¨ããæ´æ°ãããããç¥ããããXï¼ãã¤ãã¿ã¼ï¼ã¢ã«ã¦ã³ãã§ãã ãããã¨ãã®LINEã¹ã¿ã³ãã«é¢ããæ å ±ããç¥ããããLINEã¢ã«ã¦ã³ãã§ãã ⺠2024 (46) ⺠7æ (2) ⺠6æ (14) ⺠5æ (6) ⺠4æ (11) ⺠3æ (12) ⺠1æ (1) ⺠2023 (24) ⺠12æ (1) ⺠10æ (11) ⺠7æ (1) ⺠6æ (3) ⺠4æ (4) ⺠1æ (4) ⺠2022 (65) ⺠10æ (9) ⺠7æ (5) ⺠6æ (7) ⺠5æ (6) ⺠4æ (13) ⺠3
ããã¾ãæ¤ç´¢ï¼è±èªæ¤ç´¢ï¼ ããã¾ããªæ¥æ¬èªã§ï¼è±èªã§ãï¼æ¤ç´¢ã§ãã¾ããä¸æãåããåãããªãã®ã§ã試ãã§ãã æ¤ç´¢ã®ä»æ¹ã«ã¤ãã¦ã¯ãæ¤ç´¢ã®ã³ãããã覧ãã ããã AIã使ã£ã¦ãããã¨ã風ã®ç»åãçæã§ãããµã¼ãã¹ã§ãã Eãã¬ã®ã·ã§ã¼ãã¢ãã¡ã§ãã ãããã¨ããæ´æ°ãããããç¥ããããXï¼ãã¤ãã¿ã¼ï¼ã¢ã«ã¦ã³ãã§ãã ãããã¨ãã®LINEã¹ã¿ã³ãã«é¢ããæ å ±ããç¥ããããLINEã¢ã«ã¦ã³ãã§ãã ⺠2024 (46) ⺠7æ (2) ⺠6æ (14) ⺠5æ (6) ⺠4æ (11) ⺠3æ (12) ⺠1æ (1) ⺠2023 (24) ⺠12æ (1) ⺠10æ (11) ⺠7æ (1) ⺠6æ (3) ⺠4æ (4) ⺠1æ (4) ⺠2022 (65) ⺠10æ (9) ⺠7æ (5) ⺠6æ (7) ⺠5æ (6) ⺠4æ (13) ⺠3
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Deep Learning Advent Calendar 2016ã®20æ¥ç®ã®è¨äºã§ãã ConvNetã®æ´å²ã¨ResNetäºç¨®ãããã¹ãããã©ã¯ãã£ã¹ã«é¢é£ã¹ã©ã¤ããããã¾ãï¼è¿½è¨ï¼ èæ¯ åºå¤§çã趣å³ã§ä¸çä¸ã®èªè精度ãæã¤ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãéçºãã¦ãã¾ã£ãããã§ãã M2ã®å¦çã趣å³ã§ãã£ã¦ããCIFAR10ã¨CIFAR100ã®èªèã¿ã¹ã¯ã§ï¼ç¾æç¹ã§ã®ä¸çæé«æ§è½ã®çµæãåºããããã â¦è¶£å³ã§ã£ã¦ããã®ãâ¦https://t.co/HKFLXTMbzx â ãã¼ã·ã§ã¹ (@lachesis1120) 2016å¹´12æ7æ¥ åº
By Michael Coghlan AI(人工ç¥è½)ã®æ¥æ¿ãªçºéãèæ¯ã«äººéã®æ®ããã®ä¸ã«ãAIãæè¼ãããããããæ·±ãçµã¿è¾¼ã¾ããããã«ãªãã¤ã¤ããä¸ãæ§çãªç®çã«ä½¿ããããã»ãã¯ã¹ãããããã人éã«é度ãªåºæ¿ãä¸ãç¶ããå¾æ¥ã®ã©ã¤ãã¹ã¿ã¤ã«ãç ´æ» ã«ã¾ã§è¿½ãè¾¼ãå¯è½æ§ãããã¨å°é家ã«ããä¼è°ã§ææããã¦ãã¾ãã Sex-bots could âover-exertâ their human lovers, academic warns ⢠The Register http://www.theregister.co.uk/2016/12/19/love_robot_ethics/ ãã®ææã¯ã2016å¹´12æ19æ¥ãã20æ¥ã«ã¤ã®ãªã¹ã®ã´ã¼ã«ãã¹ãã¹ã»ã«ã¬ãã¸ã§éå¬ãããSecond International Congress on Love and Sex with Robots(
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}