Abstract: ( ) ( ) ( ) 1. ( ) 2. (Bayesian network, Bayesnet, belief network) [1, 2, 3, 4, 5] [6, 7, 8, 9, 10] 0 1 1 0 Xi, Xj Xi â Xj Xj Xi X1 X2 X4 X3 X5 X2 0 1 X4 0 0.8 0.4 1 0.2 0.6 æ¡ä»¶ä»ç¢ºç表 P(X4|X2) P(X3|X1,X2ï¼ ï¼°ï½ï¼ï¼¸ï¼ï¼ ï¼°ï½ï¼ï¼¸ï¼ï¼ ï¼°ï½ï¼ï¼¸ï¼ï¼ P(Xï¼|Xï¼,Xï¼ï¼ 1: Bayesian network Xj Pa(Xj) Xj Pa(Xj) ( Pa(Xj) ) P(Xj | Pa(Xj)) (1) n X1 · · · , Xn (2) P(X1, · · · , Xn) = n � j=1 P(Xj | Pa(Xj)). (2) 1 1 3 Pa(Xj) = x1
The Lightspeed Matlab toolbox by Tom Minka This toolbox is on github.
I am a former student of the Ecole Normale Superieure de Cachan, holding a M.S. (2002) and PhD (2005) from University of Rennes I. During my PhD, I worked on error-resilient compression and joint source channel coding. After that, I turned out to Computer Vision and Pattern Recognition. I joined the LEAR group (INRIA Grenoble) as a permanent researcher in 2006, and moved to INRIA Rennes in 2009. I
ãã¿ã (sumii AT yl.is.s.u-tokyo.ac.jp) [Q] ãã®ææ¸ã¯ãªãã§Q&Aå½¢å¼ãªãã§ããï¼ãæä½ãä¸èªç¶ããããã¾ãããï¼ [A] ãã¿ã¾ãããé·ãæç« ãæ¸ãã®ãè¦æãªãã§ããå£èª¿ãå¤ãªã®ã¯è¨±ãã¦ãã ããã [Q] ãªãã§ãããªææ¸ãæ¸ãããã§ããï¼ [A] æè¿ã®ç±³æ¾¤ã»å°æç ã«ãæ®æ®µãããµã¼ãã¤ãããç¿æ £ã身ã«ã¤ãã¦ããªãï¼å½ã¦ãããã¨ããããããªãï¼äººãå¢ãã¦ãããããªæ°ããã¦ããã®ãããæ°ã«ãªã£ãããã§ãã [Q] åãªãM2ã®å¦çã®ããã«ãçææ°ï¼ä½è¨ãªãä¸è©±ããããã¾ãããï¼ [A] ã¯ããããã§ããããããªããã(_ _) ã§ããåã¯ãã£ã¦ããªãã¤ããã§ãã [Q] ãµã¼ãã¤ã£ã¦ä½ã§ããï¼ [A] ãã®ææ¸ã§ãããµã¼ãã¤ã¨ã¯ãä¸è¬ã«ã人ã®ç 究ã«ã¤ãã¦åå¼·ãããã¨ããæãã¾ãã [Q] ã©ããã¦ãµã¼ãã¤ãå¿ è¦ãªãã§ããï¼ã人ã®ç 究ã°ããåå¼·ãã¦ãã¦ã¯
人工ç¥è½å¦ä¼èªã§ã¯ï¼äººå·¥ç¥è½ç 究ã®ååéã®å°é家ãWebãã¼ã¸ãç´¹ä»ãããç§ã®ããã¯ãã¼ã¯ããé£è¼ä¸ã§ãï¼ ããã«ã¯ï¼ãã®ãç§ã®ããã¯ãã¼ã¯ãã«æ²è¼ããããã¼ã¸ã¸ã®ãªã³ã¯ãéãã¾ããï¼ ã¿ãªãã¾ã®ç 究ã«ãæ´»ç¨ãã ããï¼ Vol.23
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}