ã¯ããã« ååã®è¨äºï¼cos ã使ã£ãå ç©ã¨æåã使ã£ãå ç©ã¯åããï¼ - Phys and Tipsï¼ã§ã¯ãã¯ãã«ã®å ç©ã«ã¤ãã¦ãã$\cos$ ã®å ç©ãã¨ãæåã®å ç©ããçãããã¤ã¾ã\[ \begin{align} \U \cdot \V = \abs{\U} \abs{\V} \cos \theta = \sum_i U_i V_i \end{align} \]ãæãç«ã¤ãã¨ãè¦ã¦ãããã¾ããæåã®å ç©ã¯ãè¡åã使ã£ã¦\[ \begin{align} \U \cdot \V &= \U^T \V \nonumber \\ &= \left( \begin{array}{cccc} U_1 & U_2 & \cdots & U_n \end{array} \right) \left( \begin{array}{c} V_1 \\ V_2 \\ \vdots \\ V_n \end{
ææ°è¨äº 10ãã¤ã³ãå¢å ã¯10ãã¼ã»ã³ãå¢å ã¨éã 第ä¸å®å®é度ã¨ç¬¬äºå®å®é度ã®æå³ã¨å°åº ã¹ã¿ããã³ã°(stacked generalization)ã®çºæ³ã¨ããæ¹ æã®éåãå°çã®1/6ã«ãªãçç±ã¨è±ç¥è 1å¹´ã¯ç´52é±éã ããä»ã®èãæ¹ãã§ãã å¹³è¡è»¸ã®å®çãåããããã説æãæ £æ§ã¢ã¼ã¡ã³ãã®è¨ç®ã éåéã¨åç©ã®æå³ã¨é¢ä¿ãå³ã§åããããã説æ ãã®ã³ã°ã®æå³ã¨ããã¼ã¹ãã£ã³ã°ã¨ã®éã æµéã¨æµéã®æå³ã¨å¤ææ¹æ³ ãã¼ã¿åå¸ã¨ä»ã®åå¸ã®ããããã3ã¤ã®é¢ä¿ ã«ãã´ãªã¼ è¨ç®ï¼ç°¡åãªè¨ç®ããã¯ãã«ããªã©ã®ä»£æ°å¦ï¼ ç°¡åãªåæ°ã®è¨ç®ãããé£ããå æ°åè§£å ¬å¼ãè¡åã¾ã§ã å³å½¢ï¼å¹¾ä½å¦ï¼ å°å¦çã§ç¿ãå ¬å¼ãããçé¢éä¸ç¾è±¡ãªã©ãã ææ°ã対æ°ãä¸è§é¢æ° é«æ ¡æ°å¦ã§ç¿ãææ°é¢æ°ã対æ°é¢æ°ãä¸è§é¢æ°ã å¾®ç©åã極éï¼è§£æå¦ï¼ é«æ ¡æ°å¦ã®å¾®åãç©åä¸å¿ã§ãã 確çï¼å ´åã®æ°ããã¼ã¿åæï¼ å¹³å
æ°å¦ã®ç¢ºçè«ã®åéã«ããã¦ã確çå¤æ°ã®åæï¼ãããã¤ã¸ãããã®ãã ããããè±: convergence of random variablesï¼ã«é¢ãã¦ã¯ãããã¤ãã®ç°ãªãæ¦å¿µãããã確çå¤æ°åã®ãã極éã¸ã®åæã¯ã確çè«ãããã®å¿ç¨ã¨ãã¦ã®çµ±è¨å¦ã確çéç¨ã®ç 究ã«ãããéè¦ãªæ¦å¿µã®ä¸ã¤ã§ãããããä¸è¬çãªæ°å¦ã«ããã¦åæ§ã®æ¦å¿µã¯ç¢ºçåæ (stochastic convergence) ã¨ãã¦ç¥ããããã®æ¦å¿µã¯ãæ¬è³ªçã«ã©ã³ãã ãããã¯äºæ¸¬ä¸å¯è½ãªäºè±¡ã®åã¯ããã®åããååé¢ãã¦ããã¢ã¤ãã ãç 究ããå ´åã«ããã¦ããã°ãã°ãæ¬è³ªçã«ä¸å¤ãªæåã¸ã¨è½ã¡çããã¨ãäºæ³ããããã¨ããããã¨ããèããå®å¼åãããã®ã§ãããç°ãªãåæã®æ¦å¿µã¨ã¯ããã®ãããªæåã®ç¹å¾´ã¥ãã«é¢é£ãããã®ã§ããï¼ããã«åããäºã¤ã®æåã¨ã¯ããã®åãæçµçã«å®æ°ã¨ãªããããããã¯ãã®åã«å«ã¾ããå¤ã¯å¤åãç¶ãããããä¸å¤
ã¯ãã㫠確çå¤æ°ã®åæã®åé¡ åå¸åæ å®ç¾© ãæ°æã¡ ä¾ ä¸å¿æ¥µéå®ç 確çåæ å®ç¾© ãæ°æã¡ åå¸åæã¨ã®é¢ä¿ ä¾ å¤§æ°ã®å¼±æ³å åå¸åæããã確çåæããªãä¾ æ¦åæ å®ç¾© ãæ°æ㡠確çåæã¨ã®é¢ä¿ ä¾ å¤§æ°ã®å¼·æ³å ãã¤ãçµããã³ã¤ã³æã 確çåæãããæ¦åæããªãä¾ ç¢ºå®åæ å®ç¾© ãæ°æã¡ æ¦åæã¨ã®é¢ä¿ ä¾ æ¦åæããã確å®åæããªãä¾ å¹³ååæ å®ç¾© ãæ°æã¡ ä»ã®åæã¨ã®é¢ä¿ ä¾ æ¬¡å¹³ååæãããæ¦åæããªãä¾ æ¦åæããã次平ååæããªãä¾ ã¾ã¨ã åèãµã¤ã ã¯ããã« æè¿ãèªç¶ç§å¦ã®çµ±è¨å¦ã¨ããæ¬ãèªãã§ããã®å 容ãã¾ã¨ããè¨äºãæ¸ãããæ¸ããªãã£ãããã¦ããã kriver-1.hatenablog.com ç¾å¨ç¬¬6åã®å 容ãæ¸ãã¦ããã®ã ãããã®éä¸ã§ç¢ºçåæã¨ããåèªãåºã¦ããã確çå¤æ°ã®åæã«ã¤ãã¦ã¯ããã¤ã種é¡ããã£ã¦ã確çåæã ãã§ãªãå¼±åæãå¼·å
About ALGLIB ALGLIB is a cross-platform numerical analysis and data processing library. It supports five programming languages (C++, C#, Java, Python, Delphi) and several operating systems (Windows and POSIX, including Linux). ALGLIB features include: Data analysis (classification/regression, statistics) Optimization and nonlinear solvers Interpolation and linear/nonlinear least-squares fitting Li
ã¯ããã« RBF è£éã¨ã¯ RBF è£éã¨ã¯ãRBF (æ¾å°åºåºé¢æ°, radial basis function) ãç¨ãã¦å ¥åã¨ãªãæ£å¸ãã¼ã¿ (scattered data) ã®å¤ãè£éãããã¨ã§ããã¾ãã¯ãä¸ããããæ£å¸ãã¼ã¿ãå ã«éç·å½¢ãªé¢æ°ããã£ããã£ã³ã° (ã¾ãã¯è¿ä¼¼) ãããã¨ã ã¨èãããã¨ãã§ãã¾ãã ã©ãããã¨ãã«ä½¿ããã ä¸å³ã®ããã«ã åã®ç¹å ãä¸ãããããããã®ç¹ãéããããªæ»ãããªé¢æ° ãæ±ãããã¨ãã«ãRBF è£éã使ãã¾ãã ã¾ããããé«æ¬¡å ( 次å ã¨ãã¾ã) ã®ç©ºéã«ãããè£éãå¯è½ã§ãããã®å ´å㯠åã®ç¹å ãä¸ããããã¨ãã«é¢æ° ãæ±ãããã¨ã«ãªãã¾ãã ã©ãããç¹å¾´ãããã RBF è£éã¯ãã³ãã©ã¡ããªãã¯ãªãã£ããã£ã³ã°ã®ä¸ç¨®ã§ãã ä¸ããããç¹åãå¿ ãéããããªé¢æ°ãæ±ãããã¨ãã§ãã¾ãã ãã¤ãºãå¤ãå¯åº¦ã®é«ããã¼ã¿ã«å¯¾ãã¦ã¯éå¦ç¿ (ov
ããã«ã¡ã¯ãé«æ© åé³ (Kazune Takahashi) ã¨ç³ãã¾ããç¾å¨ã¯ãæ±äº¬å¤§å¦å¤§å¦é¢ æ°çç§å¦ç 究ç§ã§ç¹ä»»ç 究å¡ããã¦ããã¾ãããã®è¨äºã§ã¯ãå¤åæ³ã®æ¦èª¬ã試ã¿ã¾ããå¤åæ³ã¯ãå¾®åæ¹ç¨å¼ãèå¯ãã代表çãªææ³ã§ããèªå·±ç´¹ä»ãããã«ãã©ããã¦å¤åæ³ãå°éã«ããã®ãã¾ã話ãããã¨æãã¾ãã ç§ã¯ã大å¦ã®æ°å¦ãåå¼·ãå§ãã¦ãããç©åã®ä¸çã®ç´ æ´ãããã«é äºããã¾ããã é«æ ¡ã¾ã§ã§ãã¨ãç©åã¯åå§é¢æ°ãä»ãã¦æ±ãã¾ããã¨ãããã大å¦ä»¥éã«åå¼·ããé«åº¦ãªææ³ã使ãã¨ãä¾ãã°åå§é¢æ°ãæ¸ããªãé¢æ°ã®å®ç©åã®æ£ç¢ºãªå¤ãæ±ã¾ãã±ã¼ã¹ãããã¾ããã¾ããæ£ç¢ºãªå¤ãæ±ãããã¨ãã§ããã¨ããããå¤ãããå°ãã or 大ãããã¨ãåãããã¨ãéè¦ã§ããå ´é¢ãå¢ãã¦ãã¾ããããããä¸é£ã®ææ³ã好ãã«ãªãã¾ããã 以ä¸ã§ãæ±é¢æ°ããåºã¦ãã¾ãããå¤åæ³ã§ä½¿ãæ±é¢æ°ã¯ãé¢æ°ã®ç©åã§æ¸ããã¾ããå¤åæ³ã¯ãç©åã
æå°äºä¹æ³ã使ã£ã¦ç´ç·è¿ä¼¼ããã¦ã¿ã¾ããç°¡åã®ããã«ãä»åã¯ä¸æ¬¡é¢æ°ã®å½¢ã«è¿ä¼¼ããå ´åã«ãã¼ã£ã¦è§£èª¬ãã¾ãã ãµã³ãã«ã³ã¼ãã¯ãã¡ãï¼ clear close all % çãã¼ã¿ã®å ¥å x = [0 3 6 9 12 15 18]'; y = [31.9 35.5 37.1 40 41.9 44.6 47]'; % çãã¼ã¿ããããã plot(x, y, 'o') % è¡åãä½æ A = ones(7, 2); A(:, 1) = time; v = T; % æå°äºä¹æ³ u = A\v; % è¿ä¼¼ç´ç·ã®ã°ã©ããéãã¦ãããã x2 = 0:18; y2 = u(1) .* x + u(2); hold on plot(x2, y2)ãµã³ãã«ãã¼ã¿ã®èª¬æ ä»åã¯é·ããªãã®ã§ãè¦æãã¦å ãèªãã§ãã ãããï¼å¤§æ¥ãã§è¿ä¼¼ã®çµæã ãã»ãã人ã¯ãpolyfité¢æ°ã調ã¹ã¦ã¿ã¦ãã ããï¼ èª¬æã
æ ¶æ義塾大å¦å¤§å¦é¢çå·¥å¦ç ç©¶ç§ KiPAS æ°è«å¹¾ä½ã°ã«ã¼ãã®å¹³å·ç¾©ä¹è¼ï¼åå£«èª²ç¨ 3 å¹´ï¼ã¨æ¾æè±æ¨¹ï¼åå£«èª²ç¨ 2 å¹´ï¼ã¯ãã辺ã®é·ããå ¨ã¦æ´æ°ã¨ãªãç´è§ä¸è§å½¢ã¨äºç辺ä¸è§å½¢ã®çµã®ä¸ã«ã¯ãå¨ã®é·ããé¢ç©ãå ±ã«çããçµãï¼ç¸ä¼¼ãé¤ãã¦ï¼ãã£ã 1 çµãããªããã¨ãããããã¾ã§ç¥ããã¦ããªãã£ãå®çã®è¨¼æã«æåãã¾ããã ç·ã®é·ããå³å½¢ã®é¢ç©ã¯ãç§ãã¡ã®èº«ã®åãã«ãããã®ã測éããéã«æ¬ ãããªãåºæ¬çãªãå¹¾ä½å¦ãç対象ã§ããä¾ãã°ã辺ã®é·ãã 3ã4ã5 ã®ç´è§ä¸è§å½¢ã¯æç§æ¸ã§ãããªãã¿ã®å³å½¢ã§ããã辺ã®é·ããå ¨ã¦ãæ´æ°ãã¨ãªãç´è§ä¸è§å½¢ã¯ã©ã®ããããããï¼ã¨ããåé¡ã¯ãå¤ä»£ã®ãªã·ã£æ代ã«ç 究ããªãããéè¦ãªåé¡ã§ããããã®æµããæ±²ã㧠20 ä¸ç´ã«å¤§ããçºå±ããç¾ä»£æ°å¦ã®ä¸åéããæ°è«å¹¾ä½å¦ãã§ãã æ¬ç 究ã§ã¯ãæ°è«å¹¾ä½å¦ã«ããããp é² Abel ç©åè«ãã¨ãæçç¹ã®éä¸æ³ããå¿ç¨ããã
ã¡ã¤ã³ãã¼ã¸ã/ãæ´æ°å±¥æ´ æ°å¦ï¼ç©çãå¦ã³æ¥½ããããã« æ´æ°æ¥ 2024 å¹´ 3 æ 18 æ¥ ï¼åæ°¸ä¹ çã«ï¼å·çä¸ã®æ°å¦ã®æç§æ¸ã®è稿ãå ¬éãã¦ãã¾ããã©ãããæ´»ç¨ãã ãããèä½æ¨©çã«ã¤ãã¦ã¯ãã®ãã¼ã¸ã®ä¸çªä¸ãã覧ãã ããã ããã¯ã主ã¨ãã¦ç©çå¦ï¼ã¨ããã«é¢é£ããåéï¼ãå¦ã¶æ¹ã対象ã«ããã大å¦ã¬ãã«ã®æ°å¦ã®å ¥éçãªæç§æ¸ã§ããã é«æ ¡æ°å¦ã®ç¥èãåæã«ãã¦ã大å¦çãå¦ã¶ã¹ãæ°å¦ããã£ããã¨è§£èª¬ããã æçµçã«ã¯ã大å¦ã§ç©çãå¦ã¶ããã«å¿ é ã®åºæ¬çãªæ°å¦ãã¹ã¦ãä¸åã§å®å ¨ã«ã«ãã¼ããæç§æ¸ãã¤ãããã¨ã夢è¦ã¦ãããããã®ç®æ¨ãæããã¦éæãããã®ãã¯ããããªãã ä»ã¯ãæ¸ãä¸ããç¯å²ããããã£ã¦å ¬éãã¦ããã 詳ããå 容ã«ã¤ãã¦ã¯ç®æ¬¡ãã覧ããã ãããããç¾æ®µéã§ã¯ â è«çãéåãããã¦é¢æ°ãåæã«ã¤ãã¦ã®åºæ¬ï¼2 ç« ï¼ â ä¸å¤æ°é¢æ°ã®å¾®åã¨ãã®å¿ç¨ï¼3 ç« ï¼ â ä¸å¤æ°é¢æ°ã®
å é±æ«ã«ãNåããã¤ãã·ãã³-ãã«ã¿è«æ³ã£ã¦ããªãããã¢ã¬ï¼ å ¨ç¶åãããªãã£ãï¼ãã¨è¨ã£ã¦ã¾ããããã®ã¨ãã¯ãã以ä¸è©±ãæéããªãã£ããã次åä¼ãã¨ãã¯ãã®è©±é¡ãå¿ãã¦ãã¾ãããç¥ããªãã®ã§ãæ¸ãè¨ãã¦ããã¾ãã åã¯ãä¼çµ±çãªã¤ãã·ãã³-ãã«ã¿è«æ³ãã®ãã®ã«ã¯æççã§ã*1ãã´ã¿ã´ã¿ããä¸çå¼ããããåãã®ã¯æ©ã ã«åãä¸ãã¦ãééåãå°å ¥ããã»ããããã¨æãã¾ãããããªæããããåºæ¥ãã ãä¸çå¼ã使ããã«éåæã«æ³¨ç®ããã¹ã¿ã¤ã«ã§ã¤ãã·ãã³-ãã«ã¿è«æ³ãç´¹ä»ãã¾ãã å å®¹ï¼ ã¤ãã·ãã³-ãã«ã¿è«æ³ æéãéåã®ã¤ã¡ã¼ã¸ãæ¨ã¦å»ã ã¦ã¼ã¯ãªããè·é¢ã¨éçä½ æ±ãé¢æ°éã¨å®ä¾ å¹³é¢ããå¹³é¢ã¸ã®åå ä¸ç¹ã®å¨è¾ºãè¨è¿°ããéçä½ã®æ ååã«ããéçä½ã®å ãã¥ã¨ã«ã²ã¼ã ã¨ãã¦ã®é£ç¶æ§ è«çå¼ã§æ¸ãä¸ãã åã³ã¤ãã·ãã³-ãã«ã¿è«æ³ ç¶ç·¨ï¼ è·é¢ç©ºéã¨ä½ç¸ç©ºéã¨é£ç¶åå ã¤ãã·ãã³-ãã«ã¿è«æ³
Last revised on May 25, 2000 UNIX & XWindow ç°å¢ã«ããã C/C++ããã°ã©ãã³ã°è¨èªã®åºç¤ã¨ãã®è¨ç®ç©çã¸ã®å¿ç¨ã解説ãã¾ãã ãã®ãã¼ã ãã¼ã¸ã®å¤ãçã®å½ãã©ã¼ãµã¤ããåå¨ããã®ã§ã注æãã ããã æ¬ç©ã®ãµã¤ã㯠http://www-cms.phys.s.u-tokyo.ac.jp/~naoki/CIPINTRO/ ã§ãã åæ¸ã æ¨å¥¨å³æ¸ä¸è¦§ Cè¨èªã¨C++è¨èªã®åºç¤ææ³ã®åå¿è åã解説 (ããã°ã©ã åå¿è ã対象ã¨ããC/C++è¨èªã®å ¥éã§ã) 第1ç« Cè¨èªã¨C++è¨èªã®å½¹å² 第2ç« ç°¡åãªè¨ç® 第3ç« ã«ã¼ãã§ç¹°ãè¿ãè¨ç® 第4ç« é åã§å¤§éãã¼ã¿å¦ç 第5ç« é¢æ°ã§è¨ç®ã®åæ 第6ç« æååã®æä½ ç¬¬7ç« ãã¡ã¤ã«ã®æä½ ç¬¬8ç« ã°ã©ãã£ãã¯(XWindow Systemå©ç¨è åã) é«æ ¡ç©çã®è¨ç®ä¾ (é«æ ¡çã対象ã¨ãã¦åæ©çãªç©
Principal component analysis (PCA) is usually explained via an eigen-decomposition of the covariance matrix. However, it can also be performed via singular value decomposition (SVD) of the data matrix $\mathbf X$. How does it work? What is the connection between these two approaches? What is the relationship between SVD and PCA? Or in other words, how to use SVD of the data matrix to perform dimen
In today's pattern recognition class my professor talked about PCA, eigenvectors and eigenvalues. I understood the mathematics of it. If I'm asked to find eigenvalues etc. I'll do it correctly like a machine. But I didn't understand it. I didn't get the purpose of it. I didn't get the feel of it. I strongly believe in the following quote: You do not really understand something unless you can expla
ãã»ã¨ãã©æ´æ°ãã£ã¦ããåãã§ããã ãµããã¦ããããã§ã¯ããã¾ãããwikipediaã«ããããè¨äºããããã§ãã ã»ã¨ãã©æ´æ° - Wikipedia 詳ããã¯èªãã§ããã ããã°ãããã®ã§ãããããªãã¡ãï¼ã»ã¨ãã©ï¼ãã¨ãããï¼ã»ã¨ãã©ï¼ãã¿ããã«ããæ´æ°ãããªãï¼å°æ°é¨åãããï¼ãã©ãæ´æ°ã«ã¨ã¦ãè¿ãæ°ãã®ãã¨ã§ãã å³å¯ã«å®ç¾©ãããæ°å¦çæ¦å¿µã¨ããããã§ã¯ãªããã¨ã«ããæ´æ°ã«è¿ãæ°ãããããéããããã¨ããç°è²ã®è¨äºã§ããããã§ãããªããããªã«æ´æ°ã«è¿ãã®ãï¼ãã¨ãããã¨ã«å¯¾ãã¦åççãªèª¬æãã¤ãããããã®ããã£ãããã¦ãé常ã«èå³æ·±ãã§ãï¼ãã¡ããããã ã®å¶ç¶ã®ãã¨ãããã¾ãï¼ã Almost Integer -- from Wolfram MathWorld âè±èªã§ããããã¡ãã®ãªã³ã¯ã«ã¯ãã£ã¨ãããããã»ã¨ãã©æ´æ°ãã®ä¾ãæãããã¦ãã¾ãã 飲ã¿ä¼ã¨ãã®è©±ã®ç¨®ã¨ãã¦ã²ã¨ã¤ã
ãã ãã¾ãã¦ã³ãã¼ãä¸ã§ãããã°ããå¾ ã£ã¦ããã¦ã³ãã¼ããå§ã¾ããªãå ´åã¯ä»¥ä¸ã®ãªã³ã¯ãã¯ãªãã¯ãã¦ä¸ããã ãã¦ã³ãã¼ããéå§ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}