Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
2. ç´¹ä» ï½ å²¡  å³â¾¥éï§©æµ Â (æ©â¼¤å¤§ç理⼯工M1) ï½ åºâ¾èº«ãä½ã¾ãç Â Â Â Â Â æ¨ªæµ ï½ è¶£å³âãæ ç»éè³,  ã·ã³ã»  /  kaggleæ´ Â 3ã¶â½æ ï½ å¥½ããªç©âãredbullã¨æè¿ã¯ãã¯ã ï½ @0kayu ç 究   è³ç»åã⽤ç¨ãã診æè£å©æ³ã®éçº 2
Deep learningåå¼·ä¼20130208 Presentation Transcript Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase DetectionRichard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, Christopher D. ManningComputer Science Department, Stanford University, Stanford, CA 94305, USA SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA (NIPS 2011) 02/08 2013 D1 å¤§ç¥ æ£
This document summarizes recent research on applying self-attention mechanisms from Transformers to domains other than language, such as computer vision. It discusses models that use self-attention for images, including ViT, DeiT, and T2T, which apply Transformers to divided image patches. It also covers more general attention modules like the Perceiver that aims to be domain-agnostic. Finally, it
Jubatus : ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿åãåæ£å¦çãã¬ã¼ã ã¯ã¼ã¯Â¶ Jubatusã¯ãåæ£ãããã¼ã¿ããã常ã«ç´ æ©ãããæ·±ãåæããããã¨ãçã£ãåæ£åºç¤æè¡ã§ãã Jubatusã®ååã®ç±æ¥ã¯ãä¿æãªåç©ã§ãããã¼ã¿ã®å¦è¡åããã®å½åã§ããã¦ãã¿ã¹ãã¨èªã¿ã¾ããæ ªå¼ä¼ç¤¾Preferred Networksã¨NTTã½ããã¦ã§ã¢ã¤ããã¼ã·ã§ã³ã»ã³ã¿ãå ±åéçºãããæ¥æ¬çºã®ãªã¼ãã³ã½ã¼ã¹ãããã¯ãã§ãã æçµçã«å ¨ã¦ã®äººã«ã¹ã±ã¼ã©ãã«ãªãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ãæä¾ãããã¨ãJubatusã®ç®æ¨ã§ãã Jubatus ã¯ä»¥ä¸ã®ç¹å¾´ãæã£ããªã³ã©ã¤ã³æ©æ¢°å¦ç¿åãåæ£å¦çãã¬ã¼ã ã¯ã¼ã¯ã§ãã ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ã©ã¤ãã©ãª: å¤å¤åé¡ãç·å½¢å帰ãæ¨è¦ï¼è¿åæ¢ç´¢ï¼ãã°ã©ããã¤ãã³ã°ãç°å¸¸æ¤ç¥ãã¯ã©ã¹ã¿ãªã³ã° ç¹å¾´ãã¯ãã«å¤æå¨ (fv_converter): ãã¼ã¿ã®åå¦çã¨ç¹å¾´æ½åº ãã©ã«ã
ããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥éãã®åå¼·ä¼åç»ã ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãºããã«ããæçãªã·ãªã¼ãºã åç»ãªã¹ãï¼ååï¼ ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®1@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®2@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第1å ãã®3@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é第2å@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®1@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®2@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®3@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第2å ãã®4@ã¯ã¼ã¯ã¹ã¢ããªã±ã¼ã·ã§ã³ãº ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿å ¥é 第3å ãã®1 @ã¯ã¼
3. ILSVRC 2012 大è¦æ¨¡ç©ä½èªèã®ã³ã³ãã¹ã http://www.image-net.org/challenges/LSVRC/2012/ Classification Localization Team name Error Team name Error 1 Super Vision 0.15315 1 Super Vision 0.335463 2 Super Vision Deep LearningVision 0.16422 2 Super 0.341905 3 ISI 0.26172 3 OXFORD_VGG 0.500342 4 ISI 0.26602 4 OXFORD_VGG 0.50139 5 ISI 0.26646 5 OXFORD_VGG 0.522189 6 ISI 0.26952 6 OXFORD_VGG 0.529482 7 OXFORD_VGG
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}