Android Bazaar and Conference 2016 Spring çºè¡¨è³æ http://abc.android-group.jp/2016s/
ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨æ·±å±¤å¦ç¿ What this book is about On the exercises and problems ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãç¨ããææ¸ãæåèªè éä¼æã®ä»çµã¿ ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å¦ç¿ã®æ¹å ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãä»»æã®é¢æ°ã表ç¾ã§ãããã¨ã®è¦è¦ç証æ ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãè¨ç·´ããã®ã¯ãªãé£ããã®ã 深層å¦ç¿ Appendix: ç¥æ§ã®ãã ã·ã³ãã«ãª ã¢ã«ã´ãªãºã ã¯ããã? Acknowledgements Frequently Asked Questions Sponsors Resources ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«é¢ãã¦æãè¡æçãªäºå®ã®1ã¤ã¯ä»»æã®é¢æ°ã表ç¾ã§ãããã¨ã§ãã ä¾ãã°èª°ãããè¤éã§æ³¢æã£ãé¢æ°$f(x)$ãä¸ããããã¨ãã¾ãï¼ ãã®çµæã¯ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãä¸ç¨®ã®æ®éæ§ãæã£ã¦ããäºã示ãã¦ãã¾ãã è¨ç®ã
ãã¹ãã©ãã¥ã¼ã³ããªã¢ã«ã¿ã¤ã ç»å解æãã¼ã« ãIkaLogãã®è£å´ é¢é£ã³ã³ãã³ã Webcamã§ã®åä½ä¾ https://www.youtube.com/watch?v=d91xyyA-exA IkaClips ã®åºåä¾ https://www.youtube.com/watch?v=w6kqbAPq1Rg ããã¿ 2015å¹´10æ http://ssmjp.connpass.com/event/21108/ Read less
Most developers these days have heard of machine learning, but when trying to find an 'easy' way into this technique, most people find themselves getting scared off by the abstractness of the concept of Machine Learning and terms as regression, unsupervised learning, Probability Density Function and many other definitions. If one switches to books there are books such as An Introduction to Statist
ãã®å¤ãç§ã¯ã«ãªãã©ã«ãã¢å·ããã¢ã«ãã«ããFlipboardã§ã¤ã³ã¿ã¼ã³ã¨ãã¦ä»äºããã¾ãããç§ã¯ããã§æ©æ¢°å¦ç¿é¢ä¿ã®åé¡ã«åãçµãã ã®ã§ããããã®ä¸ã¤ãç»åã®ã¢ããã¹ã±ã¼ãªã³ã°ã§ããããã®è¨äºã§ã¯äºåççµæãç´¹ä»ããã¾ãç§ãã¡ã®ã¢ãã«ã¨Flipboard製åã¸ã®å¿ç¨ã®ä»æ¹ã«ã¤ãã¦è°è«ãã¦ããããã¨æãã¾ãã Flipboardã®ãã¶ã¤ã³è¨èªã§ã¯ãä¸è³ªã§å°å·ç©ã®ãããªä»ä¸ããã«ãããã¨ãéè¦ã¨ããã¦ãã¾ããã³ã³ãã³ãå ¨ä½ãéãã¦ãã¦ã¼ã¶ã«ã¯å®å®æã¨ç¾ããã楽ããã§ã»ããã¨æã£ã¦ãã¾ããã¾ãã§èªåå°ç¨ã«å°å·ãããéèªãæã«æã£ã¦ãããã®ãããªä½é¨ãæä¾ãããã®ã§ãããã®ãããªä½é¨ãä¸è²«ãã¦æä¾ããã¨ããã®ã¯é£ãããã¨ã§ããç»åã®è³ªãªã©ã¨ãã£ãæ§ã ãªè¦ç´ ãã表示ããã³ã³ãã³ãå ¨ä½ã®å質ã«å¤§ããå½±é¿ããã®ã§ããç»åã®è³ªã¯ããã®ç»åã®ã½ã¼ã¹ã«ãã£ã¦å¤§ããå¤åãã¾ãããã«ããªã¼ãå½¢å¼ã®ããã¼ã¸å ¨ä½
æè¿ã¯äººå·¥ç¥è½åéã®è©±é¡ã«äºæ¬ ããªãã®ã§ãITç³»ã«è©³ãããªã人ã§ããDeep Learning ãã©ãã¨ãã人工ç¥è½ãã©ãã¨ãã¨ãã話é¡ãè³ã«ãããã¨ãå¤ãã¨æãã¾ãã ç«ãæåã Deep Learning ãªä¸ã®ä¸ã§ããããããã人工ç¥è½ã¨ã Deep Learning ã£ã¦ãªããªãã ã£ãï¼ ã¨ããçåã«çãããã人ã¯å¤ããªãã¯ãã§ãã ä»åã¯ãåºãæµ ãã人工ç¥è½ã¨ Deep Learning ã«ã¤ãã¦æ¸ãã¾ã (ãã®è¨äºãã覧ã«ãªãã°ãããããã«ã人工ç¥è½ = Deep Learning ã§ã¯æ±ºãã¦ç¡ãã®ã§ããã両è ã¯ãã並ãã§ç´¹ä»ãããã®ã§ãããã§ãååã«æ¸ãã¦ãã¾ã)ã æåã«çµè« Deep Learning ã¯(çã®)人工ç¥è½ã§ã¯ãªãããªãã§ãããã§ã人工ç¥è½ã£ã¦å¼ã°ãªãã ãDeep Learningããã人工ç¥è½ãã¨ãã«ããºã¯ã¼ã*1ã«ãªãã¤ã¤ããã®ã§æ°ãã¤ãããã ã³ã³ã
ä½ããããªã¡ãã£ã¢è¨äºãåºã¦ããããã§ãã ãããèªãã§è²ã ãªäººãããã³ããå ¥ãã¾ãã£ã¦ãã模æ§ã§ããããã®è¨äºã®ä¸æè°ãªã¨ããã¯ãå®å ¨ã«ééã£ã説æã¨ããããã§ããªãã®ã«ä½æ ãï¼ä¸¡åéã«è©³ããï¼èª°ãèªãã§ãççãªéåæãè¦ãããã¨ãããªããããªãããªãã¨ã æ£ç´ãããã¯ã©ã¤ã¿ã¼ã»ã¤ã³ã¿ãã¥ã¢ã¼ã»ã³ã¡ã³ãã¼ã¿ã¼ã»ç·¨éè ã®èª°ã®ãããªã®ãã¯å ¨ãåãããªããã§ãããããã³ãå ¥ãããã¾ãã£ã¦ããå 容ã«ã¤ãã¦è²ã ããã¤ãã£ã¦ããã¾ã建è¨çã§ãªãã®ã§ãããã§ã¯è¨äºä¸ã§æ¬é¡ã¨ãã¦åãä¸ãããã¦ãããçµ±è¨å¦ã¨æ©æ¢°å¦ç¿ã®éããã«ã¤ãã¦ã¡ãã£ã¨ã³ã¡ã³ããã¦ã¿ããã¨æãã¾ãã ãããã¡ããåãããããæ¸ãã³ã¡ã³ããå¥ã«æ£ããã¨ã¯å ¨ãéããªãã®ã§ãããããã¨ãããééã£ã¦ãã¨ããããã£ãããã³ãã³çªã£è¾¼ãã§ããã ããã°å¹¸ãã§ã*1ãããã¦ã¬ãå¢åãã®ã³ã¡ã³ãã§ããªãã®ã§ä½åæªããããã çµ±è¨å¦ã¯ãã¼ã¿ãã説æãã
ããã«ã¡ã¯ï¼ã¯ãã¯ãããç·¨é室ã¡ãã£ã¢éçºã°ã«ã¼ãé·ã® @yoshiori ã§ãã ãã®ã¾ãå¤ã®æè¡è·ã¤ã³ã¿ã¼ã³ã·ããã®ååã®éçºè¬ç¾©ã»èª²é¡é¨åãçµãã£ãã®ã§ãã£ããå ¬éãã¡ããã¾ãï¼ ã¡ãªã¿ã«ãã®ã¤ã³ã¿ã¼ã³ã®å¯¾è±¡è ã¯ããã°ã©ãã³ã°ã¯ããããèªåã§ï¼ææ¥ã¨ãã§ã¯ãªãï¼ã³ã¼ãæ¸ãã¦ãã人ãªã®ã§è¶ åå¿è åãã§ã¯ç¡ããå°ãªãã¨ãã²ã¨ã¤ä»¥ä¸ã®è¨èªã§ããã°ã©ãã³ã°ãåºæ¥ã人åãã§ãã ä¸æ¥ç® TDD + git ç·¨ï¼@yoshioriï¼ è¬ç¾©åæ¥ãªã®ã§ã¾ãã¯ç°¡åã«è©æ £ãã & éçºã®åºç¤ã®é¨åã¨ã㦠TDD 㨠git ã§å§ãã¾ããã git ã«ã¤ãã¦ã¯è»½ã説æã TDD ã¯åºæ¬ã®ãã¹ããã¡ã¼ã¹ãã§é²ãã¦è¡ãã¾ããã ã¡ããã¨ä½ãããããã³ã«ãã¹ããå®è¡ããã¡ãã»ã¼ã¸ãè¦ãã°æ¬¡ã«ãããã¨ãåããã¨ããã®ãä½é¨ãã¦ããããGREEN ãè¯ã㦠RED ãæªãã®ã§ã¯ãªããGREEN ãæ³å®ãã¦ããã®ã«
2. ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ã 2 ä»ä¸ç´ã§ãã£ã¨ãã»ã¯ã·ã¼ãªè·æ¥ ãã¼ãã¼ãã»ãã¸ãã¹ã»ã¬ãã¥ã¼ 2013å¹´ï¦2â½æå· 2018å¹´ï¦ã¾ã§ã«â½¶ç±³å½ã§14ãï½19ä¸â¼äººä¸ï¥§â¾è¶³ ãããã³ã¼ã¼ 2011å¹´ï¦5â½æ æ±ããããã¹ãã« ãã¸ãã¹ã¹ãã«ï¼æ©æ¢°å¦ç¿ï¼ããã°ãã¼ã¿ï¼ æ°å¦ï¼ORï¼ããã°ã©ãã³ã°ï¼çµ±è¨ Analyzing the Analyzers, Oâreilly 2013 4. æ¬â½æ¥ã話ããã㨠4 1. ãã¼ã¿ã®ã㨠Keywords: ããã¼å¤æ°ï¼â½æ¬ æå¤ï¼æ£è¦åï¼æ¬¡å ã®åªã 2. æ©æ¢°å¦ç¿ã®ã㨠Keywords: æ©æ¢°å¦ç¿ã®åé¡ï¼ã¢ã«ã´ãªãºã ï¼æ³¨æç¹ 3. è©ä¾¡ã®ã㨠Keywords: æ··åâ¾è¡ï¨åï¦ï¼é©åç率ï§ï¼åç¾ç率ï§ï¼Få¤ï¼ROCæ²ç· 4. åæã®ã㨠Keywords: éå¦ç¿ï¼äº¤å·®æ¤è¨¼ï¼å¦ç¿æ²ç·ï¼ãã¤ã¢ã¹ã»ããªã¢ã³ã¹ æ師ããå¦ç¿(å¾è¿°)å¯ãã®å 容ãå¤ãã§ã
æ¬è¨äºã¯ Machine Learning Advent Calendar 2014 ã® 24æ¥ç®ã®ãããã¯ã§ãã å¢ãç¶ããã»ã³ãµã¼ãã¼ã¿ M2M(Machine to machine), IoT(Internat of things) ã¨ãããã¼ã¯ã¼ããå«ã°ãã¦ä¹ ããä»æ¥ãã¤ã³ã¿ã¼ãããã«æ¥ç¶ã§ããããã¤ã¹æ°ã®ä¸æãè¦è¾¼ã¾ãããªããããã¤ã¹ã«æè¼ãããå種ã»ã³ãµã¼ãã¼ã¿ã®åæãæ´»ç¨ãä»å¾ç®ãé¢ããªãåéã§ãã ãã¼ã¿ã¯AWSãªã©ã®ã¯ã©ã¦ããµã¼ãã¹ã®ãã¼ã¿ã»ã³ã¿ã¼ã«ç½®ãããå¾ãåæããã£ã«ã¿ãªã³ã°ãããã¨ã³ãã¦ã¼ã¶ã®å½¹ã«ãã¤æ å ±ãæä¾ãã¦ãããã®ã¨æããã¾ãã å種ã»ã³ãµã¼ãè¾²æ¥ãªã©ã®åéã§ä½¿ãããããããåå¾ããããã¼ã¿ãåæãããæ´»ç¨ããã¦ããã¨ãã話é¡ãå¤æ°ä¸ãã£ã¦ãã¦ãã¾ãã ã»ã³ãµãã¼ã¿è§£æã«ãããJubatusæ´»ç¨äºä¾ - Slideshare Blue River Tech
äºæåãããã¾ã§çºè¡¨ããè«æã«é¢ããæ å ±ãã¾ã¨ãããã¼ã¸ã§ããããã¾ã§3ã¤ã®åéã§è«æãæ¸ãã¦ãã¾ããã æ©æ¢°å¦ç¿ï¼äººå·¥ç¥è½ï¼DBLPãåç §ã®ãã¨ï¼æ¶²æ¶å·¥å¦åºä½ç©çããã¾ã§åºçããæ¬ âAIã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã·ãªã¼ãº ç°å¸¸æ¤ç¥ãããªã¹ã¯ç®¡çã¸â山西å¥å¸, 山西 å¥å¸, ä¹ é é¼å¹³, å³¶ç° æ¬å£«, å³°æ¾ ç¿¼, äºæ åãµã¤ã¨ã³ã¹ç¤¾, 2022.â大è¦æ¨¡è¨ç®æ代ã®çµ±è¨æ¨è« âåçã¨çºå±â,è¤æ¾¤ æ´å¾³, äºæ åç£è¨³,å ±ç«åºç, 2020 [Amazon]âç°å¸¸æ¤ç¥ã¨å¤åæ¤ç¥,âäºæåï¼æå±±å°ï¼è¬è«ç¤¾ï¼2015 [Amazon] [ãµãã¼ããã¼ã¸]âå ¥é æ©æ¢°å¦ç¿ã«ããç°å¸¸æ¤ç¥ ââ Rã«ããå®è·µã¬ã¤ã ââ,âäºæå,ã³ãã社, 2015 [Amazon] [ãµãã¼ããã¼ã¸]âçµ±è¨çå¦ç¿ã®åºç¤ï¼ãã¼ã¿ãã¤ãã³ã°ã»æ¨è«ã»äºæ¸¬ï¼,âæå±±å°, äºæå, ç¥å¶æå¼, æ ç°å¤å夫, åç°è±ä½ ç£è¨³,å ±ç«
æ¬ç¨¿ã§ã¯çµ±è¨å¦ã»ãã¼ã¿ãã¤ãã³ã°ã»æ©æ¢°å¦ç¿é¢é£æ¸ç±ã«ã¤ã㦠å 容ãæãããã¨ãæ°å¦åï¼ç¹ã«å¾®ç©ã»ç·å½¢ä»£æ°ï¼ãæ±ããããªããã¨ å ¥æãããããã¨ã絶çãå¦ä¼ã«å ¥ããªãã¨å ¥æä¸å¯ãªã©ã§ã¯ãªããå¤æ®µãå®ãã㨠å®åã«ç¹ãããããã¨ã æã¡éã³ãããããã¨ãå¿ããæ°ç¤¾ä¼äººãéå¤ä¸ãä¼ã¿æéãã±ãããããã£ã¨åãåºããç¶ç¶ãã¦åå¼·åºæ¥ãã㨠ã主ç¼ã«é¸å®ãããè¦ãæ¸ç±ãç´¹ä»ãã¾ãã ï¼æºãããªãè¦æãå¤ãã§ããï¼ ä¸»ãªå¯¾è±¡è ã¯ãæç³»ã§æ°å¦ãçµ±è¨å¦ããã£ã¦ããªãã£ãã ããã°ã©ãã³ã°ãããããªãï¼Excelã§ååæ¼ç®ããã¦ã¹æä½ãããã¯ä½¿ããï¼ ãã©ãã¤ããã¼ã±ãã£ã³ã°ããã¼ã¿ãã¤ãã³ã°ãã£ã¦ãããï¼ ã£ã¦èãã¦ãæ°åã®æ¹ã§ãã çè èªèº«ã¯çµæ¸å¦ç§åºèº«ã®æç³»ã§ããã¾ãæ°å¦åã«èªä¿¡ããªããªãã« Webä¼æ¥ã§ãã¼ã¿ãã¤ãã³ã°ããã¦ããã¨ãã人éã§ãã ããã§ç´¹ä»ãã¦ããå 容㧠ãçµ±è¨å¦ã»æ©æ¢°å¦ç¿ã»ãã¼ã¿ã
2. â¾èªâ¼°å·±ç´¹ä» lï¬ lï¬ lï¬ lï¬ â½æ¯â¼¾æ¸å°å¹³ï¼HIDO Shoheiï¼ TwitterID: @sla å°â¾¨éï¼ãã¼ã¿ãã¤ãã³ã°ãæ©æ¢°å¦ç¿ çµæ´ï¼ lï¬ lï¬ lï¬ 2006-2012: IBMæ±äº¬åºç¤ç 究æãã¼ã¿è§£æã°ã«ã¼ã lï¬â¯ æ©æ¢°å¦ç¿ã®ã¢ã«ã´ãªãºã ç 究éçº lï¬â¯ ã客æ§æ¡ä»¶ã§æ°å¤ãã®ç°ï¥¢å¸¸æ¤ç¥ããã¸ã§ã¯ãã«å¾äº 2012-: æ ªå¼ä¼ç¤¾ããªãã¡ã¼ãã¤ã³ãã©ã¹ãã©ã¯ãã£ã¼ lï¬â¯ ⼤大è¦æ¨¡ãªã³ã©ã¤ã³åæ£æ©æ¢°å¦ç¿åºç¤Jubatusãã¼ã ãªã¼ãã¼ 2013-: Preferred Infrastructure America, Inc lï¬â¯ åç· å½¹ï¼Chief Research Officer 2
æ¥ã«è¸ãæããªã£ã¦ãã¾ãããï¼ã§ã¶ã¡ããªã®ã§ãã£ãããããã¾ãï¼ã¿ã¤ãã«ã¯ã¡ãã£ã¨é£ãæ°å³ï¼ããã£ã¨æ¥ãæ¹ã¯æ¯éè«æã«ç®ãéãã¦ã¿ã¦ãã ãã:) ä¾ã«ãã£ã¦ï¼ä»²éå ã§ãã£ã¦ããå°ããªåå¼·ä¼ã§è«æç´¹ä»ããã¦ãã¾ããã®ã§ï¼ãã®ãç´¹ä»ã§ãï¼ã¼ãã®å°éã¨ãããèå³ã®ä¸å¿ã¯èªç¶è¨èªå¦çãªã®ã§ï¼ãµã ãã¯ãã£ã¡æ¹é¢ã追ã£ã¦ããã®ã§ããï¼åå¼·ä¼ã§ã¯æ©æ¢°å¦ç¿æ¹é¢ãä¸å¿ã«ããããèªãã§ã¿ã¦ã¾ãï¼ ä»åã¯å²¡éåããã®ãã®ãã¤ã¼ãã§èå³ãæã£ã以ä¸ã®è«æãèªã¾ãã¦ããã ãã¾ããï¼ååããã£ãããï¼ã´ã¡ããã·ã³ã°ã³ã³ãã¼ãã³ãã¢ããªã·ã¹ï¼ ICML2013ã®bestpaperããã¼ã¿ä¸ã®éåï¼ä¾ãã°ç»åä¸ã®8ã®åãªã©ï¼ã0ã«ãªããããªçæå¤é å¼ãæ±ããï¼=éåã®ã³ã³ãã¯ããªè¡¨ç¾ï¼å¹ççãªã¢ã«ã´ãªãºã ãææ¡ãæ師æå¦ç¿æã®ç¹å¾´çæãªã©ã«ä½¿ãããããã http://t.co/DedSoyLaJR â 岡éå å¤§è¼ (
2. â¾èªâ¼°å·±ç´¹ä» lï¬â¯ æµ·éâãè£ä¹ (@unnonouno) lï¬â¯ ããªãã¡ã¼ãã¤ã³ãã©ã¹ãã©ã¯ãã£ã¼ lï¬â¯ æ å ±æ¤ç´¢ï¥ªãã¬ã³ã¡ã³ã lï¬â¯ æ©æ¢°å¦ç¿ã»ãã¼ã¿è§£æç 究éçº lï¬â¯ Jubatus lï¬â¯ åæ£ãªã³ã©ã¤ã³æ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ lï¬â¯ å°â¾¨é lï¬â¯ â¾èªç¶â¾è¨èªå¦ç理 lï¬â¯ ããã¹ããã¤ãã³ã° 2
2. 解æåæ© 2013å¹´5æ18æ¥Tokyo WebMining #26 2 æå¾ã®æ¥ã ãç»åå¦çã®åå¼·ã§ããã¨ãã å¾è¼©ããAV女åªã®é¡ä¼¼ç»åæ¤ç´¢ã®è©±ãèã ï¼ã±ããã 2012ï¼ DMMã«ã¯ã¢ãã£ãªã¨ã¤ããã£ãã㪠ããã§ã¦ã§ããµã¼ãã¹ä½ãã°å²ãããã 決ãã¦ä¸å身ããã®è¦æã§è§£æããã®ã§ã¯ããã¾ãã http://blog.parosky.net/archives/1506 3. è¨ç®ç°å¢ 2013å¹´5æ18æ¥Tokyo WebMining #26 3 使ç¨è¨èªï¼Python ï¼ï¼ï¼ ï¼å°ãã ãRï¼ ä½¿ç¨ã¢ã¸ã¥ã¼ã«ï¼Numpy, Scipy, OpenCV ç§å¦æè¡è¨ç®ç¨ã®ã©ã¤ãã©ãª MATLABã«ã§ãããã¨ã¯å¤§ä½ã§ãã ï numpy.ndarray åä»ãå¤æ¬¡å é å ï numpy.linalg ç·å½¢ä»£æ°è¨ç® ï scipy.cluster ä»åã¯ããã®k-meansæ³ã使ç¨
ãç¥ãã
é害
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}