ã¯ããã« æ¬ç¨¿ã§ã¯ãä»äºãããä¸ã§ã®ä½æ¥å·¥æ°ã®è¦ç©ããæ¹æ³ã«ã¤ãã¦èª¬æãã¾ãã å·¥æ°ã¨ã¯ä½ã å·¥æ°(ãããã1)ã¨ããã®ã¯ãä»äºã«ããã¦ãããã²ã¨ã¤ã®ä½æ¥ãå®äºããã¾ã§ã«ãããç·ç´¯è¨æéã®ãã¨ã§ããæ å ±å¦çæè¡è 試é¨ã«åºã¦ããTAT(ã¿ã¼ã³ã¢ã©ã¦ã³ãã¿ã¤ã )ã¨ã¯æå³åããç°ãªãã¾ã2ã ä¾ãã°ãããä½æ¥ã«40æé(40H3)ãããã¨ããå ´åãå·¥æ°ã¯40æéã§ããã¨ããã¾ãã1æ¥8æéå¤åã ã¨ããå ´åã40æéã¯5人æ¥(ã«ãã«ã¡)ã¨è¡¨ç¾ãããã¨ãã§ãã¾ããããã«ã1ã¶æ20æ¥å¤åã ã¨ããå ´åã0.25人æ(ã«ããã¤)ã¨è¡¨ç¾ãããã¨ãã§ãã¾ãã ä¸è¬çã«å·¥æ°ã®åä½ã¯ã人æ¥ãããã³ã人æãã§æ±ãã¾ãã å¦çæ代ã¯å·¥æ°ãæ°ã«ãããã¨ã¯ãªãã§ãããITã¨ã³ã¸ãã¢ã¨ãã¦ä¼ç¤¾ã§åãããã«ãªãã¨ãããªããå·¥æ°ãæèããå¿ è¦ãããã¾ãã ãªãå·¥æ°ãæèããå¿ è¦ãããã®ã ãªãå·¥æ°ãæèããå¿ è¦ãããã®ãã¨ã
ç°è«ã®ã¹ã¹ã¡ãæ¨å¹´ã®ä»é ãç±³å½ã®ãã©ã³ã大統é ã空æ¯ãæ¥æ¬æµ·æ¹é¢ã¸æ´¾é£ããç±³ææ¦äºãåçºãããã¦ãããã¨ãããæ¥æ¬ã®å½ä¼ã¯ã¨ããã°ãæ¦äºã®å±æ©ãªã©ã»ã¨ãã©è©±é¡ã«ããªãããã²ããã森åå¦ååé¡ä¸è²ã§ãã£ãã ããããï¼å¹´ãå½ä¼ã®äºç®å§å¡ä¼ï¼åé¢ï¼ã§ã¯ãã¾ã森åå¦åã§å¤§é¨ãã§ããããã®ï¼å¹´ãå½ä¼ã§è«ããããæ大ã®ãã¼ãã¯ä½ãã¨ä¸è«èª¿æ»ã§ãããã°ããã¶ãã森åã»å è¨å¦ååé¡ã ã¨ãããã¨ã«ãªãã§ãããã両è ã¯ãä»æ¥ã®æ¥æ¬ãæºãããããã»ã©ã®å¤§åé¡ã ã£ãã®ããã¨ç§ãªã©ç®èã¾ããã«ã¤ã¶ãããããªãã ææ¥æ°èãã¹ã¯ã¼ããã財åçã®ææ¸æ¹ããåé¡ã¯ã森åå¦ååé¡ã¨ããããã¯ãã¾ãã¯è²¡åçã®åé¡ã§ãããå®åè¡æ¿ã®ä¸æ³è¡çºã«é¢ããåé¡ã§ãããç§ã¯ããã®åé¡ã®éè¦æ§ãå¦å®ããã¤ããã¯æ¯é ãªããããããå½ç¶ãªããéå ã¯ææ¥ã®ã¹ã¯ã¼ããå®åæ¿æ¨©æåã®æ ¼å¥½ã®ææã¨ã¿ãªãããã®å¾ã大æ°èããã¬ãã®å ±éçªçµãã¯ã¤ãã·ã§
ãã£ã¨ããªã¼ã§ãã£ã¦ãããã ãã©4æããä¼ç¤¾å¡ã«ãªã£ã¦ã¿ã¦ããã¯ãªãããããªããªãã ããã ã¡ãªã¿ã«å¤§å¦æ代ãããã¶ã¤ãã¼ãã£ã¦ãã¦ãç¥ãåãããã®æ¡ä»¶ã§é£ã£ã¦ãããã ãã©ãç¥ãåã以å¤ã®æ¡ä»¶ããªããªãæç´ããªãããå°é·æ¡ä»¶ãå¤ããã§å°æ¥ãä¸å®ã«ãªã£ã¦ã¤ã³ãã¦ã¹ã®ãã¶ã¤ãã¼ã«ãªã£ããã§ããå¤æ³¨ã®ç®¡çã主ãªä»äºã¿ããã ããã¼ãã³ã£ãããããä¼ç¤¾å¡ã¯éå¹çã¨ã¯èãã¦ãããã©ãããã¾ã§ãã©ãã©ãã£ã¦ããã¨ã¯ã å§æ¥æéããããã«ã¿ããªã¬ã¼ã¼ã£ã¨ãã£ã¦ãã¦ãã¾ãã¯ã³ã¼ãã¼æ·¹ãããããããµã¼ãã£ã³ãã¦ããã ä»äºããªãããèåãé£ã¹ã¦è¿ãã®äººã¨éè«ãã ããéè«ã®åéã«ä»äºãã¦ããã¿ããã ãã¤ã¬ã«è¡ãéä¸ã«è¦ããå«ç æã«ãã¤ããããã¤ãããã ä¼è°ãæéã«ãªã£ããã¬ãã£ã¨éã¾ã£ã¦ãåè«è¨ãåããªããé²è¡ãã¦ãããè°é¡ããªããªã£ãããã£ã¨éè«ãã¦ãããªãã ããï¼ ã©ã³ããé£ã¹çµãã£ããã³ã¼ãã¼é£²ãã§
(注ï¼2017/04/08ãããã ãããã£ã¼ãããã¯ãå ã«ç¿»è¨³ãä¿®æ£ãããã¾ããã @liaoyuanw ) ãã®è¨äºã¯ãç§ã®èæ¸ ãDeep Learning with Pythonï¼Pythonã使ã£ããã£ã¼ãã©ã¼ãã³ã°ï¼ã ï¼Manning Publicationså)ã®ç¬¬9ç« 2é¨ãç·¨éãããã®ã§ããç¾ç¶ã®ãã£ã¼ãã©ã¼ãã³ã°ã®éçã¨ãã®å°æ¥ã«é¢ãã2ã¤ã®ã·ãªã¼ãºè¨äºã®ä¸é¨ã§ãã æ¢ã«ãã£ã¼ãã©ã¼ãã³ã°ã«æ·±ã親ããã§ãã人ã対象ã«ãã¦ãã¾ãï¼ä¾ï¼èæ¸ã®1ç« ãã8ç« ãèªãã 人ï¼ãèªè ã«ç¸å½ã®äºåç¥èããããã®ã¨æ³å®ãã¦æ¸ããããã®ã§ãã ãã£ã¼ãã©ã¼ãã³ã°ï¼ãå¹¾ä½å¦çè¦³å¯ ãã£ã¼ãã©ã¼ãã³ã°ã«é¢ãã¦ä½ããé©ããããã®ã¯ããã®ã·ã³ãã«ãã§ãã10å¹´åã¯ãæ©æ¢°èªèã®åé¡ã«ããã¦ãå¾é éä¸æ³ã§è¨ç·´ããã·ã³ãã«ãªãã©ã¡ããªãã¯ã¢ãã«ã使ããããã»ã©è¦äºãªçµæã«å°éãããªã©èª°ãæ³åãã¾ããã§ããã
æè¿ãè¦ããªã家äºãã£ã¦è©±é¡ã«ãªã£ãããã ä½æ¥ã¨ãã¦ã¯ãã£ããããã®ã« 家äºã¨ãã¦èªèãã¦ããããªãå®¶äº ä¾ãã°ã´ãåºãã«ããããæ°ããã´ãè¢ãã´ãç®±ã«è¨ç½®ããä½æ¥ãã¨ããããããã¤ã ãã®ãè¦ããªã家äºãã®æãããã£ã¦ãä»äºããªããããªããã¨æããã ã 夫婦éã§ã®å®¶äºè² æ ãå¹³çã ã¨æããã¨ãã£ã¦ ï¼å®éã«ãã¤ã³ãã¤ãã¦ã人ã¯å°ãªãã ãããã©ï¼ ã家äºãã¤ã³ããçãªãã®ã®éã夫婦ã§åãã«ãªã£ãã¨ãã ã¨æããã ãã ä¾ã㰠妻ãå¤é£¯ã®ç¨æï¼ãã¤ã³ã10ï¼ããã 夫ãæ´æ¿¯ï¼ãã¤ã³ã3ï¼ç¿æ´ãï¼ãã¤ã³ã3ï¼åä¾ã®å¯ããã¤ãï¼ãã¤ã³ã4ï¼ããã å¹³ç ã¿ãã㪠ããã§èããããã ãã© ä»äºãã帰ã£ã¦ãã夫ã®ã家äºãã¤ã³ããã¯ä½ãã¤ã³ãã«ãªã£ã¦ãï¼ ããããã¦0ãã¤ã³ãã«ãªã£ã¦ãªãï¼ ä»äºãã帰ã£ã¦ãã夫ããä»æ¥ã¯ã¾ã ä½ã家åºã«è²¢ç®ãã¦ãªããã¨ãæã£ã¦ãªãï¼ ä»äºãç«æ´¾ãªå®¶åºã®ããã®ã家äºãã ã¨æ
ç³è³ªå¶éãã¤ã¨ããã§ç®ã®æµã«ããã¦ãããã¹ã¿ããåãçæ°´åç©ã§ãã©ã¤ã¹ããã³ã¨ã¯éãå¥åº·é£åã ã¨ãããã¨ãããã£ã ç³è³ªå¶éãã¤ã¨ãããæµè¡ãããªããå¬ããç 究çµæãçºè¡¨ããããç³è³ªã®æºã¨ãã¦ä»ã®çæ°´åç©ã¨ä¸ç·ã«ç®ã®æµã«ããã¦ãããã¹ã¿ããå®éã¯é£ã¹ã¦ã太ããªãã©ãããæ¸éã«ããããã¨ãç 究ã§æããã«ãªã£ãã ãã¤ã¨ããã¯ããä¼ã¿ãã大äºï¼ åãªãã«ããªã¼å¶éãããå¹æçãªæ¸éæ³ã¨ã¯ ã«ããã»ããã³ãã®ã»ã³ãã»ãã¤ã±ã«ãºç é¢ã®ç 究ãã¼ã ã«ããã°ããã¹ã¿ãGIå¤ã®ä½ãé£åã§ãããã¨ãéè¦ã ãGIï¼ã°ãªã»ããã¯ææ°ï¼ã¨ã¯ãããé£åãè¡ç³å¤ãã©ãã ãæ¥æ¿ã«ä¸æããããã測å®ããããã®æ°å¤ãæ°å¤ãä½ããã£ããä½å ã«å¸åãããé£åã¯ãèèªãä½ãã¤ã³ã·ã¥ãªã³ãåæ³ãæãããã¦å¤ªãã«ããã®ã ã ããã«å¯¾ããåãçæ°´åç©ã§ãç±³ãå°éº¦ã使ã£ããã³ãã¸ã£ã¬ã¤ã¢ãªã©GIå¤ãé«ãé£åã¯èº«ä½ã¸ã®å¸åãéããè¡ç³å¤ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}