ãã®è¨äºã¯ #kosen10s Advent Calendar 2017 ã® 9æ¥ç® ã®è¨äºã§ãï¼ åå㯠marin72_com ããã®ã#kosen10s ã ãã 2017ãã§ããï¼ kosen10sï¼èªç±æ°ã¾ã¾ã«ã ãã©ç§©åºæã£ã¦ã®ãã³ããã£ã¦ã¦ããã¨ããã ã¨æãã¾ãï¼åã¿ãããªããã°ã©ãã³ã°ééå¢ã§ãã¡ããã¨å± å ´æãããã®ã§ï¼å°ãã§ããããªã¨æã£ã2010å¹´åã®é«å°çã¯slackãã¼ã ã¸ããã§ãªããã¾ãï¼ ã¯ããã« ä»åã¯èªåã®ç 究ãã¼ãã®1ã¤ã§ããé²åè¨ç®ã«ã¤ãã¦ï¼ã¡ãã£ã¨ç´¹ä»ããããã¨æãã¾ãï¼ã¾ã ã¾ã åå¼·ä¸ã§ããããï¼ã¨ããã©ããã¼ããã¾ããã容赦ãï¼ éºä¼çã¢ã«ã´ãªãºã (Genetic Algorithm; GA)ãè»ã³ããã¼æé©å(Ant Colony Optimization; ACO)ãªã©é²åè¨ç®ã«ãæ§ã ãªç¨®é¡ãããã¾ããï¼å¯¾è±¡ã¨ããåé¡ã¯åºæ¬çã«åãã§ãï¼é²åè¨ç®ãå
Evolution strategies as a scalable alternative to reinforcement learning Weâve discovered that evolution strategies (ES), an optimization technique thatâs been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo), while overcoming many of RLâs inconveniences. In particular, ES is simpler to implement (there is no n
Safe mutations through gradient computations In a separate paper, we show how gradients can be combined with neuroevolution to improve the ability to evolve recurrent and very deep neural networks, enabling the evolution of DNNs with over one hundred layers, a level far beyond what was previously shown possible through neuroevolution. We do so by computing the gradient of network outputs with resp
ã©ã³ãã³ã°
é害
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}