If you are not redirected automatically, follow this link/a>.
æ¨æ¥ã¯ Python ã®ã¦ã§ããã¬ã¼ã ã¯ã¼ã¯ Flask ã§ç°¡åãªå¿çã·ã¹ãã ãä½ãã¾ãããããã ãã ã¨ãã¾ãã«éå±ãªã®ã§ããã£ããã§ããã NumPy ãå©ç¨ãã¦å°ãã¯æ¥½ããããã®ãä½ã£ã¦ã¿ããã¨æãã¾ãã ãã¬ãã£ãã¨ã¯ãæè¿æµè¡ã®ã½ã¼ã·ã£ã«ã²ã¼ã ããªã³ã©ã¤ã³ã²ã¼ã ã«ãã㦠1 å課éãããã¨ã«ãã£ã¦ã¢ã¤ãã çãã©ã³ãã ã«å ¥æã§ããä»çµã¿ã®ãã¨ã§ãã 10 é£ã¬ãã£ã¨ã¯ 1 åã®è©¦è¡ã§ 10 ååã®ã¬ã¢ã¬ãã£ãå¼ãä»çµã¿ã®ãã¨ã§ããåºæ¬ç¡æã謳ãã½ã¼ã·ã£ã«ã²ã¼ã ãªã©ã§ã¯ããã®ãããªã¢ã¤ãã 課éã§å©çãå¾ãä»çµã¿ã«ãªã£ã¦ãã¾ãã ã·ãã¥ã¬ã¼ã·ã§ã³ã®ç®çã¨ãã¦ã¯ãéå¶ãµã¤ãã¨ãã¦ã¯ãã¬ã¤ã¤ã¼ãããã¶ããã¶èª²éããããªããããªå°å¹¸å¿ãç ½ãã¾ããã¬ãã£ãæä¾ã§ãã¦ãããã©ãã確èªããããã¬ã¤ã¤ã¼ãµã¤ãã¨ãã¦ã¯ãªã¢ã«ããã¼ããããå®éã®ãéãæå ¥ããåã«ãããããã©ããããã®ç¢ºçã§æåããã®ãã
NumPy é åã®åºç¤Â¶ ããã§ã¯ï¼NumPy ã§æãéè¦ãªã¯ã©ã¹ã§ãã np.ndarray ã«ã¤ãã¦ï¼ æ¬ãã¥ã¼ããªã¢ã«ã®æ¹é ã®æ¹éã«å¾ãï¼æä½éå¿ è¦ãªäºåç¥èã«ã¤ãã¦èª¬æãã¾ãï¼ np.ndarray ã¯ï¼ N-d Array ããªãã¡ï¼N次å é åãæ±ãããã®ã¯ã©ã¹ã§ãï¼ NumPy ã使ããªãå ´åï¼ Python ã§ã¯ããããN次å é åã表ç¾ããã«ã¯ï¼å¤éã®ãªã¹ããå©ç¨ããã¾ãï¼ np.ndarray ã¨å¤éãªã¹ãã«ã¯ä»¥ä¸ã®ãããªéããããã¾ãï¼ å¤éãªã¹ãã¯ãªã³ã¯ã§ã»ã«ãçµåããå½¢å¼ã§ã¡ã¢ãªä¸ã«ä¿æããã¾ããï¼ np.ndarray 㯠C ã Fortran ã®é åã¨åæ§ã«ã¡ã¢ãªã®é£ç¶é åä¸ã«ä¿æããã¾ãï¼ ãã®ããï¼å¤éãªã¹ãã¯åçã«å¤æ´å¯è½ã§ããï¼ np.ndarray ã®å½¢ç¶å¤æ´ã«ã¯å ¨ä½ã®åé¤ã»åçæãå¿ è¦ã«ãªãã¾ãï¼ å¤éãªã¹ãã¯ãªã¹ãå ã§ãã®è¦ç´ ã®åãç°ãªããã¨ã許
ä»äºã§ä½¿ããã¼ã¿ã§ã¯ã¬ã¦ã·ã¢ã³ãã£ããã£ã³ã°ãªãããããæ©ä¼ãå¤ãã®ã§ã試ãã«pythonã§æ¸ãã¦ã¿ã¾ããã æé ã¯ã ã¿ãããªçæ³æ²ç·ã«é©å½ã«ãã¤ãºãã©ã³ãã ã«å ãã¦ããã£ããããã¹ããã¼ã¿ç¹ãä½ã çæãããã¼ã¿ç¹ããã£ãããã çµæããçæ³çãªæ²ç·ãçæããããã¼ã¿ããã£ãããããçµæã®æ²ç·ãã¨ããæãã§ãããããã ãã£ãããããçµæã®ãã©ã¡ã¼ã¿ã®å¤ã¨ããã®èª¤å·®ãæ¨æºåºåã«æ¸ãåºã ã£ã¦ããæãã§ãã ã§ã¯ãæ©éã§ãããã³ã¼ããé©å½ã«è¼ãã¦ã¿ããã¨æãã¾ãããã£ã¨è¯ãæ¹æ³ãããããããããã¨ããã£ããæãã¦ããããã¨ãããããã§ããèªåã®å ´åã¯ãmain.pyã¨ããããã¡ã¤ã«ã«æ¸ãã¦ã¾ãããã¾ãããã¯ä½ã§ãããã¨æãã¾ããã #!/usr/bin/env python import math, numpy, scipy.optimize import matplotlib.pypl
numpy.cumsum# numpy.cumsum(a, axis=None, dtype=None, out=None)[source]# Return the cumulative sum of the elements along a given axis. Parameters: aarray_likeInput array. axisint, optionalAxis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtypedtype, optionalType of the returned array and of the accumulator in which the elements ar
Return a sample (or samples) from the âstandard normalâ distribution.
#coding:utf-8 import numpy as np import matplotlib.pyplot as pylab #å¹³å mu1 = [-2,-2] mu2 = [2,2] #å ±åæ£ cov = [[2,1],[1,2]] #500ã¯ãã¼ã¿æ° x1,y1 = np.random.multivariate_normal(mu1,cov,500).T x2,y2 = np.random.multivariate_normal(mu2,cov,500).T #ã°ã©ãæç» #èæ¯ãç½ã«ãã pylab.figure(facecolor="w") #æ£å¸å³ããããããã pylab.scatter(x1,y1,color='r',marker='x',label="$K_1,mu_1$") pylab.scatter(x2,y2,color='b',marker='x',labe
å·¥å¦ã®å士ã§ããããæ°å¹´ãéçºã«pythonã使ã£ã¦ãã¾ããpythonã¯ã©ã¤ãã©ãªãè±å¯ã§ä½¿ããããã¨æãã¾ããããããããã£ã¦ãã¾ãã¨ãã¯ããã®ã§ãèªåèªèº«ã¸ã®åå¿é²ãå ¼ãã¦ãã³ããç´¹ä»ãã¾ãã ã¢ã³ãã«ã«ãè¨ç®ãèãã¦ã¿ã¾ãã çµ±è¨ãå«ããç§å¦æè¡è¨ç®ã«ã¯ãnumpyã使ãã¾ãã è¡åæä½ãã§ããä¹±æ°ã確çã«é¢ããã©ã¤ãã©ãªãè±å¯ã§ãã numpyã¯æ°å¤è¨ç®ç¨ã®ã©ã¤ãã©ãªã§ããã ä¸èº«ã®éè¡åè¨ç®ãªã©ã®ã¢ã«ã´ãªãºã ã¯Cãªã©ã§æ¸ããã¦ãã¾ãã ãã®ããããã¾ãæ¸ãã°pythonã¨ã¯è¨ãã©ãé«éãªè¨ç®ãå¯è½ã§ãã ã¢ã³ãã«ã«ãã¨è¨ãã®ã¯ã¢ãã³ã«ããçºã®ååã§ãã è¨ç®æ©ç§å¦ã®ä¸çã§ããããããã¢ã³ãã«ã«ãæ³ã¨ããã®ã¯ç¢ºççãªãµã³ããªã³ã°ãè¡ããã¨ã«ãã£ã¦ãè¨ç®ãè¡ããã¨ãæãã ãã©ã³ãã¤ãã³ã«ãã£ã¦å½åãããã¨è¨ããã¦ãã¾ãã ä»åã¯numpyã§ç°¡åãªã¢ã³ãã«ã«ãè¨ç®ãè¡ãã¾ãã nu
å¼ãç¶ãnumpyã®ä½¿ãæ¹ããã«ããã«ãåå¼·ãã¦ããã¾ãï¼ numpyã«ã¯æ§ã ãªä¾¿å©é¢æ°ãç¨æããã¦ãã¾ãï¼ ãã¼ã«ã¨ãã¦ä¾¿å©ã«ä½¿ããããã«ããããï¼ã©ã®ãããªé¢æ°ãç¨æããã¦ããã®ããææ¡ãããã¨ã¯éè¦ã§ãï¼ è©³ç´°ã¯ãªãã¡ã¬ã³ã¹ãã¼ã¸ãè¦ã¦ãããã¨ãã¦ï¼ã©ã®ãããªå ´é¢ã§ä½¿ããããªé¢æ°ãããããã¾ã¨ãã¦ã¿ã¾ãï¼ ååã¯ãã¡ã³ã·ã¼ã¤ã³ããã¯ã¹ã¨è¨ãã¾ããããã¾ãæ¸ããã¨ããªãã£ãã®ã§ããã¾ããw ç®æ¬¡ 大å¥ããã¨ï¼æ¬¡ã®ãããªæãã§ããããï¼ æ°å¦é¢æ° ç·å½¢ä»£æ° è«çé¢æ° æ¥ä»é¢æ° çµ±è¨é¢æ° çµæ¸é¢æ° ãã®ä» ã¾ãnumpyã«ã¯é常ã®é¢æ°ã¨ã¯å¥ã«ndarrayã¨è¦ªåæ§ã®é«ãã¦ããã¼ãµã«é¢æ°ã¨ããé¢æ°ãããã¾ãï¼ ãã¡ãã«ã¤ãã¦ãã¡ãã£ã¨èª¬æãã¾ãï¼ ã§ã¯ããã¾ãï¼ æ°å¦é¢æ°ï¼Mathematical Functionï¼ ãªãã¡ã¬ã³ã¹ã¯ãã¡ãï¼ ãªãã¡ã¬ã³ã¹ã«ããã¨ï¼æ¬¡ã®ãããªã«ãã´ãªã«åããã
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
Pythonã§ä¸çªæåã§æ®åãã¦ããã©ã¤ãã©ãªã¨è¨ã£ã¦ãéè¨ã§ã¯ãªããNumpyãã®è¦æ¸ãã§ããããªãå¤æ©è½ãªæ°å¤è¨ç®ã©ã¤ãã©ãªã§ãå é¨ã¯Cè¨èªã§è¨è¿°ããã¦ããããè¶ é«éã«åä½ãã¾ãã ãã¯ãã« ãã¯ãã«ã®é·ãï¼æ£è¦å import numpy a = numpy.array([[2,2]]) #ãã¯ãã«ã®é·ã length = numpy.linalg.norm(a) #length=>2.8284271247461903 #ãã¯ãã«ã®æ£è¦å a / numpy.linalg.norm(a) #=>array([[ 0.70710678, 0.70710678]]) å ç©ï¼å¤ç© import numpy v1 = numpy.array((1,0,0)) v2 = numpy.array((0,1,0)) #å ç© numpy.dot(v1,v2) #=> 0 #å¤ç© numpy.cros
ããããããã¨ã è³æãè¦ãªããçµ±è¨å¦ã®ãåå¼·ã Pythonã§ä¸å é ç½®åæ£åæï¼1way -ANOVAï¼ãå®è£ ããã å®ã¯Scipyã§ã¯é¢æ°ã¨ãã¦ç¨æï¼scipy.stats.f_onewayï¼ããã¦ãããããããæé ã確èªããããã«èªåã§å®è£ ããã 注ï¼Fåå¸ããpå¤ãæ±ããé¨åãæãã¦ããã®ã§ãFå¤ãæ±ããå¾ã¯ãã¦ã¼ã¶ãèªåã§Fåå¸è¡¨ãåç §ããå¿ è¦ãããã ãªããå©ç¨ãããã¼ã¿ã¯ãå ã»ã©ãè²¼ã£ããã¡ãã®ãªã³ã¯ã®ãã®ãå©ç¨ããã ããµã³ãã«ã³ã¼ãã This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals h
Ohotechåå¼·ä¼ã§çºè¡¨ããæã®ã¹ã©ã¤ãã§ãï¼ ãã¬ã¼ã³ã§ã¯ä¸»ã«å®æ¼ã«æéãå²ãã¦ããã®ã§ï¼ 詳細ã¯ããã°ã®æ¹ã«è¨è¼ãããã¨æãã¾ãï¼ ä¸ã¶æ以å ã«ããã°ã®æ¹ã«ã¾ã¨ãã¦ããã¾ãï¼ Read less
Tokyo.SciPy #2 ã«ã¦çºè¡¨ãããæ°å¼(ãããã¯æ°å¼å ¥ãã®ã¢ã«ã´ãªãºã )ããå®è£ ã«è½ã¨ãå ´åãä½ã«æ°ãã¤ããã®ããã©ãèããã°ããã®ããã¨ããã話ã 対象ã¯ãã©ããã£ã¦æ°å¼ãããã°ã©ã ããã°ãããããããããªã人ãã¡ãã£ã¨ãããããæ°å¼ã«ãªãã¨åè¦å «è¦ãã¦ãã¾ããã³ã¼ãã«è½ã¨ãã®ã«ãããæéãããã£ã¦ãã¾ã人ããªã©ã ããã§ã¯å®è¡é度ã«ã¤ãã¦ã¯ã²ã¨ã¾ãããã¨ãã¦ãç°¡æ½ã§ééãã«ãããã¡ããã¨åãã³ã¼ããæ¸ããã¨ãç®æ¨ã«ãã¦ãã¾ãã Read less
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}