éå»ã«ãã¼ã³ãã¯ã¬ã¸ããã«ã¼ãã®è¿æ¸ãå»¶æ»ã»æ»ç´ãããã¨ãããçãæãå½ãããµããããæ¹ã¯ãä»å¾ã®ã«ã¼ããã¼ã³å¯©æ»ã«ç¡äºéãã®ãä¸å®ã«æãã®ã§ã¯ãªãã§ããããã

éå»ã«ãã¼ã³ãã¯ã¬ã¸ããã«ã¼ãã®è¿æ¸ãå»¶æ»ã»æ»ç´ãããã¨ãããçãæãå½ãããµããããæ¹ã¯ãä»å¾ã®ã«ã¼ããã¼ã³å¯©æ»ã«ç¡äºéãã®ãä¸å®ã«æãã®ã§ã¯ãªãã§ããããã
å人çã«ããããã¨èããã«ãªãã¥ã©ã ã§ããæ¥æ¬ã®å¤§å¦ã«ã¯åå¨ããªãçµ±è¨å¦é¨ããããã£ããããããªã«ãªãã¥ã©ã ãçµã¿ãããªããã¨ã çµ±è¨å¦ã®è¬ç¾©ã¯åå¸ã夿°ã®åãæããã¨ããããå ¥ããã ãã©ãææ¥ãåãã¦ãã¦åããã«ãããªãã¨å¦çã®é ããå¸¸ã æãã¦ãã¾ãããï¼ããã¾ã§ãå人çãªåè¦ã¨å¦æ³ã«æºã¡æº¢ããè¨äºã§ãããã¨ããäºæ¿ãã ããããï¼ ããã§ã¯ãã«ãªãã¥ã©ã ãçºè¡¨ãã¾ãï¼ï¼ 1. ãã¼ã¿è§£æIä¸è¬åç·å½¢ã¢ãã«æå¸«ä»ãæ©æ¢°å¦ç¿éç·å½¢ã¢ãã«ï¼ä¸è¬åå æ³ã¢ãã«ï¼ã«ãã´ãªã«ã«ãã¼ã¿è§£æçåæéè§£æã°ã©ãã£ã«ã«ã¢ããªã³ã°çµæãã¼ã¿ã®è§£ææ¢ç´¢çãã¼ã¿è§£æï¼EDAï¼å¤æ¬¡å ãã¼ã¿ã®ç¸®ç´éæå¸«ä»ãæ©æ¢°å¦ç¿ï¼ã¯ã©ã¹ã¿ãªã³ã°ï¼ãã¼ã¿ãã¤ãã³ã° 2. ãã¼ã¿è§£æIIãã¼ã¿ãã³ããªã³ã°Iï¼Rï¼ãã¼ã¿ãã³ããªã³ã°IIï¼perlãrubyãªã©ã¹ã¯ãªããè¨èªï¼ãã¼ã¿ãã¼ã¹ããã®ãã¼ã¿åå¾Iï¼RDBMSç³»ï¼ãã¼ã¿ãã¼ã¹ããã®
Rè¨èªï¼ã¢ã¼ã«ãããï¼ã¯ãªã¼ãã³ã½ã¼ã¹ã»èªç±ã½ããã¦ã§ã¢ã®çµ±è¨è§£æåãã®ããã°ã©ãã³ã°è¨èªåã³ãã®éçºå®è¡ç°å¢ã§ããããã¡ã¤ã«åæ¡å¼µåã¯.r, .R, .RData, .rds, .rdaã Rè¨èªã¯ãã¥ã¼ã¸ã¼ã©ã³ãã®ãªã¼ã¯ã©ã³ã大å¦ã®Ross Ihakaã¨Robert Clifford Gentlemanã«ããä½ããããç¾å¨ã§ã¯R Development Core Team[注 1] ã«ããã¡ã³ããã³ã¹ã¨æ¡å¼µããªããã¦ããã Rè¨èªã®ã½ã¼ã¹ã³ã¼ãã¯ä¸»ã«Cè¨èªãFORTRANãããã¦Rã«ãã£ã¦éçºãããã ãªããRè¨èªã®ä»æ§ãå®è£ ããå¦çç³»ã®å¼ç§°åã¯ããã¸ã§ã¯ããæ¯æ´ããããªã¼ã½ããã¦ã§ã¢è²¡å£ã«ããã°ãGNU Rãã§ããã[3] ãä»ã®å®è£ å½¢æ ãåå¨ããªãããã«æ¥æ¬èªã§ã®æ £ç¨çå¼ç§°ã«å£ã£ã¦ãå½è¨äºã§ã¯ã仿§ã»å®è£ ãçºãã¦é©å®ã«Rè¨èªãåã«Rçã¨å¼ã¶ã Rè¨èªã¯ãããã¯ãã«å¦çãã¨å¼ã°ããå®
竹ä¸å¹³èµããã®tweetã大åå©ããã¦ããããã§ãã http://togetter.com/li/133823 ãã®87ï¼ ã¨ãã確çã¯BPTåå¸ã«å¾ã£ã¦ç®åºããã¦ãã¾ãã*1 http://www.asahi.com/national/update/0507/TKY201105060460.html ã«ããã¨ãç´è¿ã®æ±æµ·å°éã¯1854å¹´ã®å®æ¿æ±æµ·å°éã§ãããã«å¨æã¯100-150å¹´ã¨èãããã¦ããã¨ã®ãã¨ã§ãã ã¤ã¾ããä¸è¨ã®å³ï¼æ£ç¢ºã§ã¯ããã¾ãããã©ããªãã®ã§ãï¼ã®ã (éè²é¨åã®é¢ç©)÷ï¼(éè²é¨åã®é¢ç©)ï¼(é»è²é¨åã®é¢ç©)ï¼ã 0.87 ã§ããã¨ãããã¨ã§ãã ãã®ããã«ã䏿§ãªåå¸ã§ã¯ãªãããããã¨ãã°ç´è¿ã®ï¼å¹´éã«æ±æµ·å°éãèµ·ãã確çã¯ã(87% ÷ 30) ããã大ãããã®ã«ãªãã¾ãã éã«ãä»ãã29å¹´å¾ãã30å¹´å¾ã¾ã§ã®ï¼å¹´éã«æ±æµ·å°éãèµ·ãã確çã¯ã(87% ÷ 30
2011/01/23 "第ï¼å ãã¼ã¿ãã¤ãã³ã°+WEB åå¼·ä¼ï¼ æ±äº¬â2nd Weekâæ¹æ³è«ã»ã½ã¼ã·ã£ã«ç¥ãâ"ãéå¬ãã¾ããã 第ï¼å ãã¼ã¿ãã¤ãã³ã°+WEB åå¼·ä¼ï¼ æ±äº¬ã( TokyoWebmining 9)â2ndWâæ¹æ³è«ã»ã½ã¼ã·ã£ã«ç¥ãâ: ATND Google ã°ã«ã¼ã â»ä¼å ´åå è IDåçï¼id:bob3 ããã«æè¬) 1st Weekå 容ã¾ã¨ãï¼ ç¬¬ï¼å ãã¼ã¿ãã¤ãã³ã°+WEB åå¼·ä¼ï¼ æ±äº¬ ( #TokyoWebmining #9) â1st Weekâ å¤§è¦æ¨¡è§£æã»æ©æ¢°å¦ç¿ã»ã¯ãªã³ã ç¥ãâ ãéå¬ãã¾ãã - hamadakoichi blog ä¼å ´æä¾ãéå¶ãæä¼ã£ã¦ä¸ãã£ã ãããã£æ ªå¼ä¼ç¤¾ ã®ã¿ãªãããã©ãããããã¨ããããã¾ãããç´ æµãªãã¼ã¯ãæä¾ãã¦ãããè¬å¸«ã¡ã³ãã¼ã«æè¬ãã¾ããä¼å ´åå ãUSTREAMåå ã¨ãã«å¤ãã®æ¹ã ã®åå ãå¬ããæã£ã¦ã
2NTã¯ç¡æããã°ãç¡æãã¼ã ãã¼ã¸çãæ¥½ããWEB Lifeããå±ããããã¼ã¿ã«ãµã¤ãã§ãã
The Top Three hottest new majors for a career in technology : Microsoft JobsBlog ãã¤ã¯ãã½ããã®æ¡ç¨æ´»åãªã©ãè¨ãã¦ããããã°ãMicrosoft JobsBlogãã«8æ23æ¥ä»ãã§ãã¹ããããã¨ã³ããªãThe Top Three hottest new majors for a career in technologyãï¼ãã¯ããã¸ã¼åéã§ãã£ã¨ãç±ãã3ã¤ã®å°éæ§ã¨ã¯ï¼ã§ã¯ãé·æçã«è¦ã¦æ¬¡ã®3ã¤ãããããªåéã ã¨æãããã¦ãã¾ãã Data Mining/Machine Learning/AI/Natural Language Processing ï¼ãã¼ã¿ãã¤ãã³ã°ï¼æ©æ¢°å¦ç¿ï¼äººå·¥ç¥è½ï¼èªç¶è¨èªå¦çï¼ Business Intelligence/Competitive Intelligence ï¼ãã¸
ãã¼ã£ã¨å¾¡é°ãã¾ã§æ¨æ¥ãç¡äºã«ä¸æµ·ãã帰å½ãã¾ããã ãã¦ããã人ãããç¢éããã®è¬ç¾©è³æãã¢ãããã¼ããã¦ãããµã¤ãããããããã£ã¦ãããã«ããã®ã§ãå°ãã¾ã¨ãã¦ãã ãããã¨ãããè¦æãããã ããã®ã§ãä»ã¾ã§ãã£ã¦ããè¬ç¾©ã®ããã®ãµã¤ããä¸è¦§ã«ãã¦ã¿ã¾ããã [ãã§ã«çµäºããè¬ç¾©] çµæ¸å¦å ¥éï¼é§æ¾¤å¤§å¦çµæ¸å¦é¨ã»2009年度[éå¹´ç§ç®ï¼åä½]ï¼ æ³¨ï¼åºæ¬çã«2008年度ã¨åãå 容ã§ãããããããç´°ããæç´ãããã¦ããã®ã§ãåºæ¬çã«ã¯2009å¹´åº¦ã®æ¹ããåç §ãã ããã çµæ¸å¦å ¥éï¼é§æ¾¤å¤§å¦çµæ¸å¦é¨ã»2008年度[éå¹´ç§ç®ï¼åä½]ï¼ æ³¨ï¼2008年度ã¯å¦çããè¦æããããå°ãã ãè¡åçµæ¸å¦ãåãä¸ãã¾ããã2009年度ã®è¬ç¾©ã«ã¯å ¥ã£ã¦ããªãã®ã§ãè¡åçµæ¸å¦ã«èå³ã®ããæ¹ã¯ãã®é¨åã ã2008年度ããåç §ãã ããã(infoseekãç¡æWebãµã¤ããµã¼ãã¹ãçµäºãã¦ãã¾ã£ããããç¾å¨ã¯ã¢ã¯ã»
TOPICS Hacks , Database , Math çºè¡å¹´ææ¥ 2007å¹´12æ PRINT LENGTH 292 ISBN 978-4-87311-335-7 忏 Statistics Hacks FORMAT æ¬æ¸ãStatistics Hacksãã¯ãçµ±è¨ï¼Statisticsï¼ã®åºç¤ã¨å®çæ´»ã§æ´»ç¨ããæ¹æ³ï¼Hackï¼ã解説ããæ¸ç±ã§ããååã§ã¯ãçµ±è¨çãªèãæ¹ã«ãªãã¿ã®ãªãèªè ããå確èªãããèªè ã®ããã«ãåºæ¬çãªèãæ¹ãçµ±è¨ããã«ã¼ã®å¿ é ãã¼ã«ãåããããã解説ãå¾åã§ã¯ãè¯ãæ¨æ¬ã®æ½åºæ¹æ³ãé©åãªã¢ã³ã±ã¼ãã®è¨åå 容ããã¹ãçµæã§èªåã®ã©ã³ã¯ãæ£ç¢ºã«ç¥ãææ³ãªã©ãçµ±è¨ããã¸ãã¹ãæè²ãªã©å®çæ´»ã§æ´»ããæ¹æ³ã解説ããããã«ä¼æ¥ã®å¯¿å½ã®äºæ¸¬ããå»å¦çãªè¨ºæçµæãæ£ããçè§£ããæ¹æ³ãã¹ãã¼ãã®çµæäºæ¸¬ãæç« è§£æãªã©ãã¦ãã¼ã¯ãªå¿ç¨æ¹æ³ã¾ã§ç´¹ä»ãã¾ããæ¬æ¸ã§è§£èª¬ããææ³ã¯ã
æ¥é ããæ¥½å¤©ã®ãµã¼ãã¹ããå©ç¨ããã ãã¾ãã¦ãããã¨ããããã¾ãã ãµã¼ãã¹ããå©ç¨ããã ãã¦ããã¾ãã¨ãã大å¤ç³ã訳ãããã¾ããããç¾å¨ãç·æ¥ã¡ã³ããã³ã¹ãè¡ããã¦ããã ãã¦ããã¾ãã ã客æ§ã«ã¯ãç·æ¥ã®ã¡ã³ããã³ã¹ã«ããããè¿·æãããããã¦ãããèª ã«ç³ã訳ãããã¾ããã ã¡ã³ããã³ã¹ãçµäºæ¬¡ç¬¬ããµã¼ãã¹ã復æ§ãããã¾ãã®ã§ã ä»ãã°ãããå¾ ã¡ããã ãã¾ãããããé¡ãç³ãä¸ãã¾ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}