2018å¹´12æ18æ¥ãNASAã®ãã¤ã¸ã£ã¼2å·ã¯æé3ä¸8000ãã¤ã«ï¼ç´6ä¸4000ããã¡ã¼ãã«ï¼ã§é²ã¿ãªããæé空éã«é²å ¥ãããå°çãã200åããã¡ã¼ãã«ä»¥ä¸é¢ããä»ããã¤ã¸ã£ã¼2å·ã«ã¯æãåºæ¬çãª5ã¤ã®æ©å¨ï¼å°çã¨é£çµ¡æ©è½ãå«ãï¼ãã2023å¹´å¾åã¾ã§é転ããããã«å¿ è¦ãªååãæ®ã£ã¦ããã¨NASAã®ã¨ã³ã¸ãã¢ãã¡ã¯èãã¦ããã ããããã¾ã§ããã¤ã¸ã£ã¼2ã«æ°¸é ã®éãè¿«ã£ã¦ãããã¨ã³ã¸ãã¢ãã¡ã2026å¹´ã¾ã§ãã®å¯¿å½ã延ã°ãæ¹æ³ãè¦ã¤ããã¾ã§ã¯ã ãã¤ã¸ã£ã¼2å·ã¯ããã¤ã¸ã£ã¼1å·ã¨åããåååãååã¨ãã¦ããããããã®æ¢æ»æ©ã§ä½¿ç¨ããã¦ããæ¾å°æ§åä½ä½ç±é»æ°è»¢æå¨ï¼RTGï¼ã¯ãå´©å£ãããã«ããã¦ã ã®ç±ãå©ç¨å¯è½ãªé»åã«å¤æãããåé¡ã¯ããã®ãã¯ã¼ãè¡°ãã¦ãããã¨ã ã æã¡ä¸ããã46å¹´éãã¨ã³ã¸ãã¢ãã¡ã¯ãã¼ã¿ã¼ã¨ããå®å®è¹ãé£è¡ãç¶ããããã«å¿ é ã§ã¯ãªãã·ã¹ãã ã®ã¹ã¤ãããåããª
ãã£ããå¦ãã Excelã使ãããªããªãã®ã¯ãªãï¼âããã¼ã¿ãã¼ã¹ãã¨ãã¼ã¿å ¥åã®çµ±ä¸ã«ã¼ã«ãç´¹ä»ï¼åçï¼jessieï¼PIXTAï¼ ãExcelã¨ããã½ããã¯ãç´æçã«ä½¿ãã¦ãã¾ãã¾ããããã«ãå¤ãã®äººã¯ã¡ããã¨åå¼·ãããã¨ã¯æãã¾ãããå®ã¯ããã«è½ã¨ãç©´ãããã®ã§ãã ããèªãã®ã¯ããExcelå»ããããéITç³»ã®å»å¸«ãªãããåå¿è ã¬ãã«ããç¬å¦ã§Excelãå¦ã³ãè·å ´ã§ã¯ãExcelã®ç¥ãã¨ã¾ã§å¼ã°ããããã«ãªã£ã人ç©ã§ãã ãã®è¨äºã§ã¯ããã¨ã¯ã»ã«ä¸æãªäººããã¦ãã¾ã£ã¦ããã4ã¤ã®NGè¡åãããExcelå»ããã®èæ¸ã人çãå¤ãããExcelã®ç¥ã¹ãã«ããããä¸é¨ãæç²ã»åæ§æãã¦ãå±ããã¾ãã ãå³è§£ãExcelã®4ã¤ã®NGè¡åã¨ã¯ï¼ â Excelãå¦ãã§ãè·å ´ã§ä½¿ãããªããªãã®ã¯ãªãï¼ â ãã¼ã¿å ¥åã®çµ±ä¸ã«ã¼ã« Excelãæ¬ã§å¦ãã§ããéã«ãExcelã®åºæ¬ãã·ã§ã¼ãã«ããã
2024.11.06ï¼ ããç¥ããã2025年度役å¡åè£è æ¨è¦ã®ãé¡ã   â詳細 2024.11.01ï¼ ãè¨äºæ´æ°ãç§ã®ããã¯ãã¼ã¯ãä¸äººç§°è¦ç¹æ å解æã   â詳細 2024.11.01ï¼ ãä¼èªçºè¡ã人工ç¥è½å¦ä¼èª Vol.39 No.6 (2024/11)   â詳細 2024.10.11ï¼ ãçºè¡¨åéã第131å人工ç¥è½åºæ¬åé¡ç 究ä¼(SIG-FPAI)ï¼2025/1/14-15 çæ¬, 2024/11/11 ç· å   â詳細 2024.10.10ï¼ AIç 究è ããã¼ãã«ç©çå¦è³ã»åå¦è³ãåè³ãããã¨ã«ã¤ãã¦ã®ã³ã¡ã³ã   â詳細
(ï¼1)ãJDLAèªå®ããã°ã©ã ãã¯ãé«çæè²æ©é¢ãæ°éäºæ¥è ãæä¾ããæè²ããã°ã©ã ã§ãå½åä¼ãå¥éå®ããåºæºããã³ã·ã©ãã¹ãæºãããã®ãããã°ã©ã ã®ä¸è¦§ã¯ãã¡ãã (ï¼2) æ¹å®ã·ã©ãã¹å¯¾å¿åã®ããã°ã©ã ãçµäºããæ¹ããåé¨ããç³è¾¼ã¿ããã ãã¾ãã詳細ã¯ãåè¬ãããèªå®ããã°ã©ã äºæ¥è ã«ç´æ¥ãå°ããã ããã (ï¼3) åä¼å ´ã®å®å¡ã«ããããå¸æã®ä¼å ´ãé¸æã§ããªãå ´åãããã¾ãã (ï¼4) ã½ã¼ã¹ã³ã¼ããå«ãåé¡ã«ã¤ãã¦ã¯ãPythonã§è¨è¿°ãã¾ãã¯ãã¬ã¼ã ã¯ã¼ã¯ãå©ç¨ããåé¡ãåºé¡ãã¾ããåæãã¬ã¼ã ã¯ã¼ã¯ã¯ãã¡ããåç §ãã ããã (ï¼5) å£ä½ã§ã®ãã¦ãã£ã¼åé¨ãæ¿ãã¾ãã詳細ã¯ãã¢ã½ã³VUE Eè³æ ¼åé¨ãµã¤ãï¼https://www.pearsonvue.co.jp/jdlaï¼ãã覧ãã ããã (ï¼6) ä¼å¡å²å¼ã®ãã¦ãã£ã¼ãçºè¡è´ãã¾ããçºè¡ã¾ã§2å¶æ¥æ¥ã»ã©ãæéãããã ãã¾ã
What is âJDLA Deep Learning for GENERALâ Gæ¤å®ã¨ã¯Gæ¤å®ã¨ã¯ãä¸è¬ç¤¾å£æ³äººæ¥æ¬ãã£ã¼ãã©ã¼ãã³ã°åä¼ï¼JDLAï¼ãå®æ½ãããAIã»ãã£ã¼ãã©ã¼ãã³ã°ã®æ´»â½¤ãªãã©ã·ã¼ç¿å¾ã®ããã®æ¤å®è©¦é¨ã§ãã ãã£ã¼ãã©ã¼ãã³ã°ãã¯ããã¨ããã AIã«é¢ããæ§ã ãªæè¡çãªâ¼¿æ³ããã¸ãã¹æ´»â½¤ã®ããã®åºç¤ç¥èãæãã¦ãããã©ããã確èªã§ãã¾ãã Advantages of âJDLA Deep Learning for GENERALâ Gæ¤å®ã§å¾ããããã®ä½ç³»çã«AIã»ãã£ã¼ãã©ã¼ãã³ã°ãå¦ç¿ãããã¨ã§ããAIã§ä½ãã§ãã¦ãä½ãã§ããªãã®ãããã©ãã«AIãæ´»ç¨ããã°ãããããAIãæ´»ç¨ããããã«ã¯ä½ãå¿ è¦ãããç解ã§ããããã«ãªãããã¼ã¿ãæ´»ç¨ããæ°ããªèª²é¡ã®çºè¦ãã¢ã¤ãã¢ã®åµåºãå¯è½ã«ãªãããã¸ã¿ã«æ½çã®æ¨é²ã«èªä¿¡ãæã¦ãããã«ãªããªã©ãããªãã®ãã¸ãã¹ããã£ãªã¢ã®
ããã¹ããèªãã ãåç»ãè¦ãããã¦ãããã£ããã¯ããªã®ã«ããããããã¨ããã¨ãªãããã§ããªãâ¦â¦ããä¸çæ¸å½ç解ããã¯ãã®ãã¨ããã¹ããä»äºã«æ´»ãããããå°ãã§ã¯ããã¾ãããï¼ããããããã¨ãã§ãããã®ããã ã«ã¯ããªã«ãè¦ããªãå£ãããããã«æãã¦ããæ¹ãå¤ãã®ã§ã¯ãªãã§ããããã ããã§ä»åã¯ãããã£ãã®ã«ã§ããªãã¨ããç¾è±¡ãèµ·ããåå ãæ·±æãããè¦ããç¥èãèªå¨ã«æ±ããããã«ãªãã³ãããç´¹ä»ãã¾ãã ãããã£ãã®ã«ã§ããªããã®ã¯ãªãã ãããã£ãï¼ ã§ããï¼ãã¸ã¨å¤ããæ¹æ³1. ã¤ã³ãããã¨ã¢ã¦ããããã®æ¯çãã3ï¼7ãã«ãã ãããã£ãï¼ ã§ããï¼ãã¸ã¨å¤ããæ¹æ³2. é©åãªã¿ã¤ãã³ã°ã§å¾©ç¿ãã ãããã£ãï¼ ã§ããï¼ãã¸ã¨å¤ããæ¹æ³3. 人ã«æããããã«èª¬æãã ãããã£ãã®ã«ã§ããªããã®ã¯ãªãã ããã£ãã®ã«ã§ããªãââãããã£ããã¨ãçããã®ã¯ããããããã¨ãã§ãããã¯ç°ãªã
ãã³ãã³åé¡ã«ãªããéæ£è¦ç¤¾å¡ã¨æ£ç¤¾å¡ãéç¨å½¢æ ã«ãã給ä¸æ ¼å·®ãå¤ãã®éæ£è¦ç¤¾å¡ããæ£ç¤¾å¡ã«ãªãããâ¦â¦ãã¨æ²çã®å«ã³ãããããªãããæ£ç¤¾å¡ã«ã¯ãªããããªããã¨ãã人ããã¿ã¦ããã¾ãããã ãã©ã³ãã³ã°ãé½éåºçãä¼ç¤¾å¡ã®å¹´åã4ä½ãæç¥ã3ä½ã大éªãâ¦1ï½47ä½ æ°·æ²³æä¸ä»£ã®40代éæ£è¦ç¤¾å¡ã®æç´ââæ£ç¤¾å¡ã«ãªããã ããæ稿ããã®ã¯ã40代å¾åã ã¨ããéæ£è¦ç¤¾å¡ã®ç·æ§ãåçå´åçã令å4å¹´è³éæ§é åºæ¬çµ±è¨èª¿æ»ããã¿ã¦ã¿ãã¨ãç·æ§æ£ç¤¾å¡ï¼å¹³åå¹´é½¢43.5æ³ï¼ã®å¹³åæåï¼æå®å 給ä¸é¡ï¼ã¯35.3ä¸åãè³ä¸ãå«ããå¹´åã¯579.8ä¸åãä¸æ¹ã§ç·æ§éæ£è¦ï¼å¹³åå¹´é½¢52.8æ³ï¼ã®å¹³åæåã¯24.7ä¸åãå¹´åã¯353.4ä¸åããã®å·®ã¯æåã§10ä¸åå¼·ãå¹´åã§230ä¸åå¼±ã§ããä»®ã«ç·æ§ãéæ£è¦ç¤¾å¡ã®å¹³åçãªçµ¦ä¸ãæã«ãã¦ããããæåã¯24ä¸åã»ã©ã§ãã å年代ã§ãæ£ç¤¾å¡ã¨éæ£è¦ç¤¾å¡ãéç¨å½¢æ ã«ããå·®
20代ã30代ã®åãæã¯ã親ããããã£ã¨ãèªåãé¢ç½ãã¨æãããã£ãªã¢ãæã«å ¥ãããã¨èãã¦ãããã¾ããå°éçãªã¹ãã«ãæã¤äººã¯ãçµèº«éç¨ã®å¿ è¦æ§ããã¾ãæããªãããã®ãããããããããã®ããä»äºãããé«ã給ä¸ãæ±ãã¦è»¢è·ãå¸æãã人ãå¢ãã¦ããã 1970年代ãã1980年代ååã«æ¡ç¨ããã25æ³ãã29æ³ã®äººãã¡ããæåã¯1ã¤ã®ä¼ç¤¾ã«10å¹´éå¤ããã¨ããããã®ãã¡ã®70ï¼ ã¯ãå°ãªãã¨ãããã«10年以ä¸å¤ç¶ãã¦ããããããã15å¹´å¾ã«æ¡ç¨ããã人ãã¡ã§ã¯ã52ï¼ ããæ®ããªãã£ããåæ§ã®å¾åã¯ã度åãã¯ä½ããã®ã®ããã以ä¸ã®å¹´é½¢å±¤ã§ãè¦ãããã IT人æã®çµ¦ä¸ãä¸ãããã¨ã¯å¿ ç¶ ãã®ä¸ä»£äº¤ä»£ã«å ããå°éçãªã¹ãã«ãæã¤ç¤¾å 人æã®ä¸è¶³ã«å¯¾å¿ãããããç¾å¨ã§ã¯ä¸éæ¡ç¨ã®äººæã確ä¿ããããããªãä¼æ¥ãå¢ãã¦ããã1999å¹´å½æãä¸éæ¡ç¨ãå®æ½ãã¦ããä¼æ¥ã¯ã大å°åãã37ï¼ ã«ãããªãã£ããä»ã§ã¯
ã ãããããã¤ã³ãã®ããã«ãã§ããã°é«æ ¡æ°å¦ã§3è¡3åã®è¡åãå¦ãã§ããã¨ã大å¦ã§ã®ç·å½¢ä»£æ°ã®å¦ã³ã«ã¹ã ã¼ãºã«æ¥ç¶ããã ãããçè ã¯æ¨å¹´åè¡ãããæ°ä½ç³»ã»å¤§å¦æ°å¦ å ¥éã®æç§æ¸ ä¸ãã§ãç·å½¢ä»£æ°ã«ç¶ãã¦å¤å¤é解æã®æ±ã¨ãªãåæ£å ±åæ£è¡åã®ãåºæå¤ãã«é¢ãã¦ä¸å¯§ã«èª¬æããããããã¯ä¸ã§è¿°ã¹ããããªæ¯çãæ°æã¡ãæ±ãã¦ããããã§ããã æ¥æ¬ã®åºçæ°ã¨ã¤ã³ãå·¥ç§å¤§å¦ã®åé¨çæ°ã¯åã ãã¦ãä¸ã§ã¯IITã®å ¥è©¦ã«åºé¡ãããæ°å¦ã®åé¡ããæ¥æ¬ã®æ°å¦æè²ãè¦ã¦ãããããã以ä¸ã«éè¦ãªãã¨ãããã¨èãããããã¯ãç´80ä¸äººã¨ããIITã®åé¨çæ°ã¯ãã¡ããã©æ¨å¹´ã®æ¥æ¬ã®åºçæ°ã§ãããããªãã¡ããã®åã©ããã¡ãå ¨å¡IITãåé¨ããã¬ãã«ã®æ°å¦åããã¤ã¨ãã¯ããã¦äºè§ã«ãªãã ããã ãã®ããã«èããã¨ãç·åã«é¢ãã¦ãåãã§ããããããããããªã±ã¸ã§ãã¨å¼ã°ããçç³»ç§ç®ã«ç§ã§ã女åã ãã®æè½ã伸ã°ãã ãã§ãªããæ°
ã½ããã¦ã§ã¢éçºã«ãããå質ã®ã¡ããªã¯ã¹ã«ã¤ãã¦ãæ°æ§2åã®æ¬ãæ¯ã¹ã¦ã¿ã¾ããã 1åã¯ããåãã¦å¦ã¶ã½ããã¦ã§ã¢ã¡ããªã¯ã¹ãã åèãFive Core Metrics: The Intelligence Behind Successful Software Managementãï¼Lawrence H. PutnamãWare Myersèï¼ã¯ã2003å¹´ã«åºçããã¦ãã¾ã*1ã åãã¦å¦ã¶ã½ããã¦ã¨ã¢ã¡ããªã¯ã¹~ããã¸ã§ã¯ãè¦ç©ããã®ããã®ãã¼ã¿ã®å°ãæ¹ ä½è :ãã¼ã¬ã³ã¹ã»Hã»ãããã ,ã¦ã¨ã¢ã»ãã¤ã¤ã¼ãºæ¥çµBPAmazon ãã1åã¯ããã¢ã¸ã£ã¤ã«ã¡ããªã¯ã¹ãã åèãAgile Metrics in Action: How to measure and improve team performanceãï¼Christopher W. H. Davisèï¼ã¯ã2015å¹´ã«åºçããã¦
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}