Amazon ECS ã§ä½ãã¹ã±ã¼ã©ãã«ãªã»ã«ããã¹ãã©ã³ãã¼ / GitHub Actions Meetup Tokyo #4
ãªããNumpyãªã©ã®è¨ç®ç³»ã©ã¤ãã©ãªã¨ã»ããã§æ±ãå ´åã¯ãAnacondaãMinicondaãå©ç¨ããã»ããããã¨æãã¾ã(ç¹ã«Windowsã®å ´å)ãæå ã®ç°å¢ã§ã¯Minicondaããcondaã使ã£ã¦ã»ããã¢ãããã¾ããã åºæ¬çã«ã¯jupyter notebookãå®è¡ãããã©ã«ãã§ä½æ¥ãè¡ããã¨ã«ãªãã®ã§ããã¡ã¤ã«ãä¿ç®¡ããããã£ã¬ã¯ããªã§èµ·åãè¡ã£ã¦ãã ããã Notebookã®ä½æ èµ·åããã¨ä»¥ä¸ã®ãããªç»é¢ã表示ãããã¨æãã¾ããNew Notebookãããã¡ã¤ã«ãä½æãã¦ããã¾ããã(Python3ãé¸æãã¾ã)ã Jupyter Notebookã¯Cellã¨ããåä½ã§ææ¸ãæ§ç¯ãã¾ãããã®Cellã«ã¯Pythonã³ã¼ããMarkdownããã¹ãã¨ãã£ã種å¥ãããã®ã§ãé©åãªãã®ãé¸æãææ¸ãä½æãã¦ããã¾ãã å®è¡ãã¿ã³ãæ¼ããã¨ã§ãPythonã³ã¼ããå®è¡ããã
pandas ã§ãããã大ãããã¼ã¿ãæ±ãå ´åããã®å¦çé度ãæ°ã«ãªã£ã¦ãããå ¬å¼ããã¥ã¡ã³ãã§ã¯ããã©ã¼ãã³ã¹åä¸ã®ããã« Cython ã Numba ã使ãæ¹æ³ãè¨è¼ãã¦ããã Enhancing Performance â pandas 0.16.2 documentation ãã軽ã試ãããã ããªã®ã« ãããã Cythonã Numba ã使ãã®ã¯æéã ãããã¨ãã£ã¦ãã¾ãã«é ãã®ãå«ã ããããªã¨ããpandas æ¬æ¥ã®ããã©ã¼ãã³ã¹ãã§ããã ãç¶æããããã®ãã¤ã³ããæ´çãããã pandas ã«éãããããã©ã¼ãã³ã¹æ¹åã®éã«ã¯ããã«ããã¯ã®ç®æã«ãã£ã¦ã¨ãã¹ã対çã¯ç°ãªããpandas ã§ã¯é度åä¸/ã¨ãã¸ã±ã¼ã¹å¦çã®ããã« ãã¼ã¿ã®åãæ¡ä»¶ã«ãã£ã¦å é¨ã§å¦çãç´°ããåãã¦ããã常ã«ããããã°éããªãï¼ ã¨ããæ¹æ³ãåºãã®ã¯é£ããã以ä¸ã¯ãã®åæã®ããã§ãå é¨å®è£ ããã¿
Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Why Caffe? Expressive architecture encourages application and innovat
A new commit protocol and transaction programming model for efficiently achieving strong consistency in databases across data centers. With the emergence of cloud services, distributed databases have benefited from many of the advantages of deploying on a clusters of machines. However, entire data centers of machines can fail. Here are just a few recent data center failures, and one even losing cu
RRDtool Caching Daemon How to Escape the I/O Hell Sebastian âtokkeeâ Harl <[email protected]> Debian RRDtool Team OSMC 2010 October 6, 2010 About RRDCacheD? How to Escape the I/O Hell â Sebastian âtokkeeâ Harl â 2 / 36 RRDCacheD = RRDtool Caching Daemon meant for large setups to solve I/O-related problems In short: 1. âinterceptâ RRD updates 2. accumulate data 3. write accumulated data to disk at
NoSQLãã¼ã¿ã¢ããªã³ã°ææ³.markdown #NoSQLãã¼ã¿ã¢ããªã³ã°ææ³ åæï¼NoSQL Data Modeling Techniques « Highly Scalable Blog I translated this article for study. contact matope[dot]ono[gmail] if any problem. NoSQLãã¼ã¿ãã¼ã¹ã¯ã¹ã±ã¼ã©ããªãã£ãããã©ã¼ãã³ã¹ãä¸è²«æ§ã¨ãã£ãæ§ã ãªéæ©è½è¦ä»¶ããæ¯è¼ããããNoSQLã®ãã®å´é¢ã¯å®è·µã¨çè«ã®ä¸¡é¢ããããç 究ããã¦ããããã種ã®éæ©è½ç¹æ§ã¯NoSQLãå©ç¨ãã主ãªåæ©ã§ãããNoSQLã·ã¹ãã ã«ããé©ç¨ãããCAPå®çãããã§ããããã«åæ£ã·ã¹ãã ã®åºæ¬çååã ããã ãä¸æ¹ã§ãNoSQLãã¼ã¿ã¢ããªã³ã°ã¯ãã¾ãç 究ããã¦ãããããªã¬ã¼ã·ã§ãã«ãã¼ã¿ãã¼ã¹ã«è¦ããããããªã·ã¹ãããã£ãã¯
The data URI scheme is a uniform resource identifier (URI) scheme that provides a way to include data in-line in Web pages as if they were external resources. It is a form of file literal or here document. This technique allows normally separate elements such as images and style sheets to be fetched in a single Hypertext Transfer Protocol (HTTP) request, which may be more efficient than multiple H
Now, next, and beyond: Tracking need-to-know trends at the intersection of business and technology AI/ML Few technologies have the potential to change the nature of work and how we live as artificial intelligence (AI) and machine learning (ML). Future of the Firm Everything from new organizational structures and payment schemes to new expectations, skills, and tools will shape the future of the fi
ã¿ããªã®IoT/ã¿ããªã®Pythonã®èè ãäºåçè¿ã160平米ã®åºä»ãä¸æ¸å»ºã¦ã«å«/æ¯å/å¨/ãããã¨æ®ããã¦ã¾ããæé1000ä¸PV/150ä¸UUã®Webãµã¼ãã¹éå¶ä¸ã å 責äºé ãã©ã¤ãã·ã¼ããªã·ã¼ ç£è¨³è ã®ã¿ãªãããã¯ãããã®åéã§èåãªæ¹ã ãæ¸è©ãæ¸ãã¦ããã®ã§ä»æ´æããã ããã¤ã¤ãï¼ãããã¡ããé¡ãã¡ã¾ã¡ã ãã¨æ¸ããæåãããï¼ç®æ¬ããã ããã®ã§æ¸è©ãã°ã ãå ¥éã½ã¼ã·ã£ã«ãã¼ã¿ãã¯ä»æµè¡ã®ã½ã¼ã·ã£ã«ãã¼ã¿ãã¤ãã³ã°ã®å ¥éæ¸ãFacebookãTwitterãªã©ã½ã¼ã·ã£ã«ãããã¯ã¼ã¯ãçã¿åºããã¼ã¿ãåæãããï¼çµæããã¸ã¥ã¢ã©ã¤ãºããããã®ææ³ã解説ããæ¸ç±ãèªã¿å§ã¾ã£ã¦20ãã¼ã¸(!)ã§Twitterã®ãã¼ã¿ã解æï¼GraphvisãProtovisã§ã°ã©ãåãã¦ã¿ãã¦ãã¾ãããªã®è¯ãããã®å¾ã¯ããããå¼ãã¤ããããªããï¼XFN,REST,OAuth,CouchDB,ma
第1åãã³ãã³å¦ä¼Î²ã¨ããå¦ä¼ã§çºè¡¨ããã¦ããã ãã¾ãããéå¶ã®çæ§ãããçºè¡¨ã®æ©ä¼ãè¨ãã¦ãã ããèª ã«ãããã¨ããããã¾ããè·å ´ã®çæ§ãããå¿ããããªãæ給使ã£ã¦ããããªããã ãã³ãã³åç»ãã®ãã®ã®ãã¼ã¿ç 究ããã£ã¦ãã人ãå°ãªããã¨ãã¾ããã¼ã¿ç 究ã¯ï¼åéã§ã®è§£èª¬ãé£ãããã¨ããã®ï¼ç¹ã«æ©ãã çµæããã¨ãããã¦ã±çããã¨ãããã¤ãã®è·¯ç·ã«è½ã¡çãã次第ã§ããå½åã®äºå®ã«ã¯å ¥ã£ã¦ãããããã¯èµ¤åã°ãã«ãã¿ãªãããâ¦âãã³ãã³ã£"â¦ãã¦ã¾ãããããã¨ãããã¿ã¯ããããªãã¦ããã£ãã¨ä»ã¨ãªã£ã¦ã¯å¿åºæã£ã¦ãã¾ãã å¦ä¼ã§ç´¹ä»ããããã³ãã³åç»ã¿ã°ã®é¢ä¿æ§ã表ããçãã¼ã¿ï¼éã¿ãªãã°ã©ããlglå½¢å¼ï¼ã¨ãããããã³ããã°ã©ã ã»Voronoi Treemapã§å³ç¤ºããpdfããã¦ã³ãã¼ãã§ããããã«ãã¾ããã çºè¡¨å½æ¥ããå¿ãããã¨ãããã¾ãããã¯ãããã³ãã³åç»ã¯ãé³æ¥½ãµã¤ããã ãªãã¨ããã
åæ(æ稿æ¥ï¼2011/11/04)ã¸ã®ãªã³ã¯ NoSQLãã¼ã¿ã¹ãã¢ã¯ãããã¥ã¡ã³ããã¼ã¹ããªãã¸ã§ã¯ãã°ã©ããkey-valueãã¢ã®ãããªéé¢é£ãã¼ã¿ã¿ã¤ãã«ä»£æ¿ã®ãã¼ã¿ã¹ãã¬ã¼ã¸ãªãã·ã§ã³ãæä¾ããã åæ£ãã£ãã·ã¥ã¯ãNoSQLã¹ãã¢ã¨ãã¦ä½¿ç¨ãããã¨ãã§ããã®ã ãããï¼Ehcacheã®Greg Luckæ°ã¯ãåæ£ãã£ãã·ã¥ã¨NoSQLãã¼ã¿ã¹ãã¢ã®é¡ä¼¼ç¹ã«ã¤ãã¦è¨è¼ãããInfoQã¯ãã¦ã¼ã¹ã±ã¼ã¹ã«ã¤ãã¦å½¼ã¨è©±ãããã®åªä½æ§ã¨å¶éã«ã¤ãã¦ãã£ããã¢ããããã InfoQ: ã©ã®ããã«åæ£ãã£ãã·ã¥ã½ãªã¥ã¼ã·ã§ã³ãNoSQLãã¼ã¿ã¹ãã¢ã¨æ¯è¼ã§ããã®ããæãã¦ãã ããï¼ Greg Luck: åæ£ãã£ãã·ã¥ã¯ãå¾ ã¡æéãçãããããã«ä¸è¬çã«ãã¼ã¿ãã¤ã³ã¡ã¢ãªã«ä¿æããããã«è¨è¨ããã¦ãã¾ããNoSQLã¹ãã¢ã¯ãR (relations)ãé¤ããDBMSã§ãé常ã¯ãã©ã³ã¶ã¯ã·ã§ã³
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}