損失関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 損失関数の意味・解説 

損失関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/12 18:16 UTC 版)

数理最適化および決定理論において、損失関数(そんしつかんすう、: loss function)またはコスト関数: cost function誤差関数: error function)とも呼ばれる)とは[1]、ある事象または1つ以上の変数の値を、その事象に関連する何らかの「コスト」を直感的に表す実数に対応づける関数である。最適化問題は、損失関数を最小化することを目的としている。目的関数(もくてきかんすう、: objective function)とは、損失関数またはその逆関数(特定の領域では、報酬関数利潤関数効用関数適合度関数英語版などと呼ばれる)のいずれかであり、この場合は最大化されることになる。損失関数は、階層のいくつかの層からの項目を含むことがある。

統計学では、損失関数は一般的にパラメータ推定英語版に使用され、問題における事象は、あるデータのインスタンスに対する推定値と真値との差の関数である。この概念はラプラスと同様に古くからあり、20世紀半ばにエイブラハム・ウォールドによって統計学に再導入された[2]。たとえば、経済学の文脈では通常、経済的コスト英語版後悔(リグレット)英語版を指して使われる。分類では、事例の分類が誤った場合のペナルティのことである。保険数理では、特に1920年代のハラルド・クラメールの研究以来、保険料に対して支払われる給付金をモデル化するために、保険の文脈で使用される[3]最適制御では、損失は望ましい値を達成できなかった場合のペナルティである。金融リスク管理英語版では、この関数は金銭的損失にマッピングされる。

後悔

レナード・サヴェッジ英語版は、ミニマックス(minimax)のような非ベイズ法を用いる場合、損失関数は後悔(リグレット)英語版の考え方に基づくべきであると主張した。すなわち、意思決定に伴う損失は、根底にある状況を知っていれば下せたであろう最善の決定の結果と、それを知る前に実際に行った決定との差であるべきという。

二次損失関数

二次損失関数(quadratic loss function)は、たとえば、最小二乗法などでよく使用される。この関数は分散の特性や対称性があるため、他の損失関数よりも数学的に扱いやすいことが多い。目標を上回る誤差は、目標を下回る同じ大きさの誤差と同じ損失をもたらす。目標を t とすると、二次損失関数は、ある定数 C に対して

カテゴリ

Template:Differentiable computing





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  損失関数のページへのリンク

辞書ショートカット

','','','','','','','','','','','','','','','','','',''];function getDictCodeItems(a){return dictCodeList[a]};

すべての辞書の索引



Weblioのサービス

「損失関数」の関連用語









9
32% |||||


損失関数のお隣キーワード
検索ランキング
';function getSideRankTable(){return sideRankTable};

   

英語⇒日本語
日本語⇒英語
   



損失関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの損失関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS