This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section St

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section St


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


stacking boxes: A089054*, A089239, A089055
stacks: A001522*, A001523*, A001524*, A003697
stacks: see also under partitions

stained glass windows, sequences related to :
stained glass windows, This section of the Index is "under construction"
stained glass windows, circular: see stained glass windows, round
stained glass windows, crosses: A331455, A331456, A331458
stained glass windows, frames: A331457, A331776, A332559
stained glass windows, hexagrams: A331908, A331909, A333049, A333116
stained glass windows, K_{n,n}: see stained glass windows, 1Xn
stained glass windows, linear, see stained glass windows, 1Xn
stained glass windows, pentagon: A331929, A330847, A329710, A331939
stained glass windows, rectangular: A288180, A333278, A288187; A288177
stained glass windows, rectangular: see also stained glass windows, 1Xn
stained glass windows, rose windows: see stained glass windows, round
stained glass windows, round: A007569, A135565, A007678; also A000127, A006561
stained glass windows, round: see also Index entry for Sequences formed by drawing all diagonals in regular polygon
stained glass windows, round: see also entry for chords in a circle
stained glass windows, semicircles joining points on a line: A290447
stained glass windows, triangular: A092866, A091908, A274585, A274585, A092867
stained glass windows, 1Xn: A331755, A331757, A306302, A018808
stained glass windows, 3D analogs: A222267
stained glass windows, n-gon, see stained glass windows, round

stamp-folding: A001011*
stamp-folding: see folding
Standard deviation:: A007654, A007655
Stanley, Enumerative Combinatorics, sequences found in
Stanley sequences: S = S_3, avoiding 3-term AP's: A005836 = S(0), A262057, A262096: related arrays, A003278 = S(1), A033162 = S(3);

A186776 = S(0,2), A004793 = S(1,3), A033160 = S(2,4), A033163 = S(3,5); A185256 = S(0,3), A033157 = S(1,4), A005487 = S(0,4), first differences: A236269, A187843 = S(0,5), first differences: A231990, A188055 = S(0,6), A093678 = S(1,7), A188052 = S(0,7), A188056 = S(0,8), A188057 = S(0,9), A093679 = S(1,10), A093680 = S(1,19), A093681 = S(1,28); A188053 = S(0,1,4), A188054 = S(0,1,5), A266727 = S(0,1,7).
S_4 = avoiding 4-term AP: A005839 = S_4(0), A005837 = S_4(1), A267650 = S_4(0,3).
S_5 = avoiding 5-term AP: A020654 = S_5(0), A020655 = S_5(1), A266728 = S_5(0,3). A266729: "modular" starting values.
S_6 = avoiding 6-term AP: A020656 = S_6(0), A005838 = S_6(1);
S_7 = avoiding 7-term AP: A020657 = S_7(0), A020658 = S_7(1);
S_8 = avoiding 8-term AP: A020659 = S_8(0), A020660 = S_8(1);
S_9 = avoiding 9-term AP: A020661 = S_9(0), A020662 = S_9(1);
S_10 = avoiding 10-term AP: A020663 = S_10(0), A020664 = S_10(1).
Sequences avoiding 4-, 5-, 6-, 7-term subsequences with constant second differences: A240075 and A240555; A267300 and A267301; A267302 and A267303; A267304 and A267305.
A240556 and A240557; A267306 and A267307: sequences avoiding 5- resp. 6-term subsequences with constant third differences.
see also entry for "non-averaging sets and no three-term arithmetic progressions"

stapled intervals: A090318
stapled sequences: see stapled intervals

star numbers, sequences related to :
star numbers: A003154* A006060 A006061 A006062 A045946 A046752 A051673 A054318 A054319 A054320 A055684

stars in sky: A053406, A072171
statistical models: see under models
Stechkin's function: A055004

Steiner systems , sequences related to :
Steiner systems, quadruple (SQS's): A051390* A124120 A124119
Steiner systems: A001293* (S(5,8,24))
Steiner systems: A187567 and A187585 (S(2,4,n))
Steiner triple systems (STS's): A001201*, A030128*, A030129*, A051390*, A002885 (cyclic), A006181, A006182, A051391

stella octangula numbers: A007588*

Stern's sequences and related sequences :
Stern's diatomic sequence: A002487*
Stern's sequence: A005230*
Stern's and Stern-Brocot sequences: see also (1) A002435 A002487 A003686 A006842 A006843 A006893 A008619 A014172 A014173 A014175 A020652 A038567
Stern's and Stern-Brocot sequences: see also (2) A042978 A046126 A049455 A049456 A054204 A054424 A054427 A057114 A057115 A057431 A057432 A059893
Stern's and Stern-Brocot sequences: see also (3) A064881 A064882 A064883 A064884 A064885 A064886 A065249 A065250 A065625 A065658 A065659 A065674
Stern's and Stern-Brocot sequences: see also (4) A065675 A065676 A065810 A065934 A065935 A065936 A065937 A070878 A070879
Stern-Brocot tree: A007305*/A007306*, A007305*/A047679*, A070880*/A049456*
Stern-Brocot tree: see also Farey fractions
Stern-Brocot tree: see also fractions, trees of
Stirling numbers , sequences related to :
Stirling numbers, associated: A008299* A008306* A000276 A000478 A000483 A000497 A000504 A000907 A001784 A001785
Stirling numbers, associated: see also Stirling numbers, generalized
Stirling numbers, generalized: (1) A000369 A000558 A000559 A001701 A001702 A001705 A001706 A001707 A001708 A001709 A001711 A001712
Stirling numbers, generalized: (2) A001713 A001714 A001716 A001717 A001718 A001719 A001721 A001722 A001723 A001724 A004747 A011801
Stirling numbers, generalized: (3) A013988 A035342 A035469 A046817 A048176 A049029 A049385 A049444 A049458 A049459 A049460 A051141
Stirling numbers, generalized: (4) A051142 A051150 A051151 A051186 A051187 A051231 A051338 A051339 A051379 A051380 A051523
Stirling numbers, generalized: see also Stirling numbers, associated
Stirling numbers, of 1st kind, triangle of: A008275*, A048994*, A048594, A008276
Stirling numbers, of 1st kind: A000254
Stirling numbers, of 1st kind:: A007189, A000914, A000254, A000399, A001303, A000454, A000482, A001233, A000915, A001234
Stirling numbers, of 2nd kind, triangle of: A008277*, A048993*, A019538, A008278
Stirling numbers, of 2nd kind: A000225, A000392, A000453, A000481, A000770, A000771, A049434, A049447, A049435
Stirling numbers, of 2nd kind:: A007190, A000392, A000453, A001297, A000481, A000770, A000771, A001298
Stirling numbers, of 2nd kind: see also set partitions
Stirling numbers, of 2nd kind: see also Bell numbers

Stirling transform: (1) A003633 A003659 A005172 A005264 A005804 A005805 A006677 A007469 A007470 A050946 A051782 A051784
Stirling transform: (2) A052342 A055896 A055924
Stirling transform: see Transforms file
Stirling's formula: A001163/A001164
Stolarsky array: A007064 A007067 A027941 A035487 A035488 A035489 A035506 A035507 A035508 A035509 A035510 A035511
Stopping times:: A007177, A007176, A007186
Storage systems:: A005595, A005594
Stormer numbers : A005528*
Stormer numbers, see also: A002071, A002312, A002314, A005529, A047818
Strobogrammatic numbers: A000787*, A007597, A018846, A018847, A018848, A018849, A105268, A230833, A274831
strongly multiplicative means that a(m*n) = a(m)*a(n) for all m and n >= 1
strongly refactorable numbers: A141586
structure constants: A003673, A005600, A007235
structures, differential: A001676*
STS: see Steiner triple systems


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]