login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011801
Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).
13
1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
OFFSET
1,2
COMMENTS
Previous name was: Triangle of numbers related to triangle A049223; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-4; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008546(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Peter Luschny, The Bell transform
FORMULA
T(n, m) = n!*A049223(n, m)/(m!*5^(n-m)).
T(n+1, m) = (5*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n < m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of n-th column: (1/n!)*( 1 - (1-5*x)^(1/5) )^n.
Sum_{k=1..n} T(n, k) = A028575(n).
EXAMPLE
Triangle starts:
1;
4, 1;
36, 12, 1;
504, 192, 24, 1;
9576, 3960, 600, 40, 1;
229824, 100656, 17160, 1440, 60, 1;
6664896, 3048192, 563976, 54600, 2940, 84, 1;
226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1;
MATHEMATICA
(* First program *)
T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; n<m=0; T[_, 0]=0; T[1, 1]=1;
Table[T[n, m], {n, 10}, {m, n}]//Flatten (* Jean-François Alcover, Jun 20 2018 *)
(* Second program *)
rows = 10;
b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
T= Table[b[n, m], {n, rows}, {m, rows}]//Inverse//Abs;
A011801= Table[T[[n, m]], {n, rows}, {m, n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
PROG
(Sage) # uses[inverse_bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
(Magma)
function T(n, k) // T = A011801
if k eq 0 then return 0;
elif k eq n then return 1;
else return (5*(n-1)-k)*T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
CROSSREFS
Cf. A028575 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), this sequence (m=5), A013988 (m=6).
Sequence in context: A217020 A329066 A144267 * A169656 A362589 A303987
KEYWORD
easy,nonn,tabl
EXTENSIONS
New name from Peter Luschny, Jan 16 2016
STATUS
approved