login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001722
Generalized Stirling numbers.
(Formerly M5061 N2191)
3
1, 18, 251, 3325, 44524, 617624, 8969148, 136954044, 2201931576, 37272482280, 663644774880, 12413008539360, 243533741849280, 5003753991174720, 107497490419296000, 2410964056571616000, 56366432074677312000, 1371711629236971456000, 34699437370290760704000
OFFSET
0,2
COMMENTS
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=5) ~ exp(-x)/x^3*(1 - 18/x + 251/x^2 - 3325/x^3 + 44524/x^4 - 617624/x^5 + ... ) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+2, 2)*5^k*Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,5)|, for n >= 2. - Milan Janjic, Dec 21 2008
MATHEMATICA
Table[Sum[(-1)^(n + k)*Binomial[k + 2, 2]*5^k*StirlingS1[n + 2, k + 2], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
Sequence in context: A154241 A154250 A154350 * A060788 A144708 A020528
KEYWORD
nonn
EXTENSIONS
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
STATUS
approved