login
A093678
Sequence contains no 3-term arithmetic progression, starting with 1, 7.
11
1, 7, 8, 10, 11, 16, 17, 20, 28, 34, 35, 37, 38, 43, 44, 47, 82, 88, 89, 91, 92, 97, 98, 101, 109, 115, 116, 118, 119, 124, 125, 128, 244, 250, 251, 253, 254, 259, 260, 263, 271, 277, 278, 280, 281, 286, 287, 290, 325, 331, 332, 334, 335, 340, 341, 344, 352
OFFSET
1,2
COMMENTS
a(1)=1, a(2)=7; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.
FORMULA
a(n) = (Sum_{k=1..n-1} (3^A007814(k) + 1)/2) + f(n), with f(n) an 8-periodic function with values {1, 6, 5, 6, 2, 6, 5, 7, ...}, as proved by Lawrence Sze.
MAPLE
N:= 1000: # to get all terms <= N
V:= Vector(N, 1):
A[1]:= 1: A[2]:= 7: k:= 8;
for n from 3 while k < N do
for k from 1 to n-2 do
p:= 2*A[n-1]-A[k];
if p <= N then V[p]:= 0 fi
od:
for k from A[n-1]+1 to N do
if V[k] = 1 then A[n]:= k; nmax:= n; break fi;
od;
od:
seq(A[i], i=1..nmax); # Robert Israel, May 07 2018
MATHEMATICA
a[n_] := Sum[(1/2)(3^IntegerExponent[k, 2]+1), {k, 1, n-1}] + (1/8)( 12(-1)^n - 7Sin[n Pi/2] + 7Sin[3n Pi/2] - Sin[(n+1)Pi/4] + Sin[(5n+1) Pi/4] + Cos[n Pi/2] + Cos[3n Pi/2] + Cos[n Pi/4] + Cos[3n Pi/4] + Cos[5n Pi/4] + Cos[7n Pi/4] + Cos[(3n+1)Pi/4] - Cos[(7n+1)Pi/4] + 38); Array[a, 60] (* Jean-François Alcover, Mar 22 2019 *)
CROSSREFS
Row 3 of array in A093682.
Sequence in context: A120192 A333490 A256651 * A188052 A266727 A214004
KEYWORD
nonn,look
AUTHOR
Ralf Stephan, Apr 09 2004
STATUS
approved