OFFSET
1,2
COMMENTS
Previous name was: Triangle of numbers related to triangle A048882; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quintic (5-ary) trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
Also the Bell transform of A007696(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
LINKS
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
T. Copeland, Mathemagical Forests
T. Copeland, Addendum to Mathemagical Forests
M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
W. Lang, First 10 rows.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012
E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
Mathias Pétréolle, Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
FORMULA
a(n, m) = n!*A048882(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1; E.g.f. of m-th column: ((-1+(1-4*x)^(-1/4))^m)/m!.
a(n, m) = sum(|A051142(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(5*t+t^2)*x^2/2!+(45*t+15*t^2+t^3)*x^3/3!+..., where A(x) = -1+(1-4*x)^(-1/4) satisfies the autonomous differential equation A'(x) = (1+A(x))^5.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-4*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A035469 (D = (1+x)^4*d/dx).
(End)
EXAMPLE
Triangle starts:
{1};
{5,1};
{45,15,1};
{585,255,30,1};
{9945,5175,825,50,1};
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> mul(4*k+1, k=0..n), 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 22 2011 *)
rows = 9;
a[n_, m_] := BellY[n, m, Table[Product[4k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
New name from Peter Luschny, Jan 30 2016
STATUS
approved