login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.
2

%I #14 Jan 13 2024 04:45:17

%S 1,3,17,111,757,5321,38131,276913,2031075,15011373,111618559,

%T 834026649,6257264575,47105424671,355648865425,2691925368489,

%U 20420008516447,155197818599687,1181563534890855,9009291052956319,68788955737056469,525876413869285467

%N Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.

%H Alois P. Heinz, <a href="/A368639/b368639.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = A362242(2n,n).

%F a(n) mod 2 = 1.

%F a(n) ~ c * d^n / sqrt(n), where d = 7.83243076186533979978704688382432500791136... and c = 0.4087157525553882018687231317140076547941617894... - _Vaclav Kotesovec_, Jan 13 2024

%e a(1) = 3: (00)(10)(11), (00)(01)(11), (00)(11).

%p b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(

%p `if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..21);

%Y Cf. A362242.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jan 01 2024