login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368637
Primes p such that the sum of cubes of the 4 consecutive primes starting with p is twice a prime.
1
1229, 3041, 3719, 3793, 4969, 5107, 6217, 6317, 6661, 7517, 8807, 8963, 9011, 9883, 10093, 10247, 11311, 12983, 13331, 15443, 17839, 19801, 21149, 21727, 22639, 23417, 23629, 24223, 24709, 25349, 26813, 27329, 27691, 28123, 28711, 28807, 28837, 29453, 29587, 30161, 31327, 32069, 34421, 35267
OFFSET
1,1
COMMENTS
Primes p such that A001222(A133525(A000720(p))) = 2.
LINKS
EXAMPLE
a(3) = 3719 is a term because 3719, 3727, 3733, 3739 are 4 consecutive primes with 3719^3 + 3727^3 + 3733^3 + 3739^3 = 2 * 103749725899 with 103749725899 prime.
MAPLE
N:= 10000: # for terms up to prime(N)
P:= [seq(ithprime(i), i=1..N+3)]:
P3:= map(`^`, [0, op(P)], 3):
S:= ListTools:-PartialSums(P3):
R:= [seq](S[i+4]-S[i], i=1..N):
P[select(i -> isprime(R[i]/2), [$3..N])];
MATHEMATICA
lst[maxN_] := Module[{p = 2, i = 1, l = {}}, Monitor[While[i <= maxN, If[PrimeQ[Total[Take[Prime[Range[PrimePi[p], PrimePi[p] + 3]], 4]^3]/2], AppendTo[l, p]; i++; ]; p = NextPrime[p]; ], i]; l];
lst[44] (* Robert P. P. McKone, Jan 02 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 01 2024
STATUS
approved