login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358146
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j).
2
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 29, 5, 1, 1, 6, 33, 103, 99, 6, 1, 1, 7, 51, 253, 598, 351, 7, 1, 1, 8, 73, 506, 2073, 3601, 1275, 8, 1, 1, 9, 99, 889, 5351, 17577, 22165, 4707, 9, 1, 1, 10, 129, 1429, 11515, 58481, 152173, 138445, 17577, 10, 1
OFFSET
0,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 3, 9, 19, 33, 51, ...
1, 4, 29, 103, 253, 506, ...
1, 5, 99, 598, 2073, 5351, ...
1, 6, 351, 3601, 17577, 58481, ...
PROG
(PARI) T(n, k) = sum(j=0, n, binomial(k*j, j));
CROSSREFS
Columns k=0-5 give: A000012, A001477(n+1), A006134, A188675, A225612, A225615.
Main diagonal gives A226391.
Cf. A358050.
Sequence in context: A295205 A297020 A099597 * A283113 A123610 A209631
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 31 2022
STATUS
approved