login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295205
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally or vertically adjacent to 2 or 4 1s.
7
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 6, 14, 14, 6, 1, 1, 9, 25, 42, 25, 9, 1, 1, 13, 53, 108, 108, 53, 13, 1, 1, 19, 111, 284, 438, 284, 111, 19, 1, 1, 28, 217, 777, 1597, 1597, 777, 217, 28, 1, 1, 41, 426, 2146, 5831, 8241, 5831, 2146, 426, 41, 1, 1, 60, 860, 5887
OFFSET
1,5
COMMENTS
Table starts
.1..1...1....1.....1.......1........1.........1..........1...........1
.1..2...3....4.....6.......9.......13........19.........28..........41
.1..3...8...14....25......53......111.......217........426.........860
.1..4..14...42...108.....284......777......2146.......5887.......16061
.1..6..25..108...438....1597.....5831.....21717......81590......307267
.1..9..53..284..1597....8241....40924....205338....1042704.....5314555
.1.13.111..777..5831...40924...279663...1900344...12981261....89115875
.1.19.217.2146.21717..205338..1900344..17574795..162114347..1498926338
.1.28.426.5887.81590.1042704.12981261.162114347.2023191364.25252046266
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-3)
k=3: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) +a(n-4) -2*a(n-5)
k=4: [order 13]
k=5: [order 32]
k=6: [order 85]
EXAMPLE
Some solutions for n=6 k=4
..0..1..1..0. .1..1..1..0. .0..1..1..0. .0..1..1..1. .1..1..1..0
..0..1..1..0. .1..0..1..0. .0..1..1..0. .0..1..0..1. .1..0..1..1
..0..0..0..0. .1..0..1..0. .0..0..0..0. .0..1..0..1. .1..1..0..1
..0..0..1..1. .1..0..1..0. .0..0..1..1. .1..1..0..1. .0..1..0..1
..0..0..1..1. .1..0..1..0. .0..1..1..1. .1..0..1..1. .0..1..0..1
..0..0..0..0. .1..1..1..0. .0..1..1..0. .1..1..1..0. .0..1..1..1
CROSSREFS
Column 2 is A000930(n+1).
Sequence in context: A347148 A202756 A156354 * A297020 A099597 A358146
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 16 2017
STATUS
approved