login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358050
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j) * binomial(k*(n-j),n-j).
2
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 16, 4, 0, 1, 8, 39, 64, 5, 0, 1, 10, 72, 258, 256, 6, 0, 1, 12, 115, 664, 1719, 1024, 7, 0, 1, 14, 168, 1360, 6184, 11496, 4096, 8, 0, 1, 16, 231, 2424, 16265, 57888, 77052, 16384, 9, 0, 1, 18, 304, 3934, 35400, 195660, 543544, 517194, 65536, 10, 0
OFFSET
0,5
FORMULA
T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(k*n+1,j).
T(n,k) = Sum_{j=0..n} k^(n-j) * binomial((k-1)*n+j,j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 16, 39, 72, 115, ...
0, 4, 64, 258, 664, 1360, ...
0, 5, 256, 1719, 6184, 16265, ...
0, 6, 1024, 11496, 57888, 195660, ...
PROG
(PARI) T(n, k) = sum(j=0, n, binomial(k*j, j)*binomial(k*(n-j), n-j));
(PARI) T(n, k) = sum(j=0, n, (k-1)^(n-j)*binomial(k*n+1, j));
(PARI) T(n, k) = sum(j=0, n, k^(n-j)*binomial((k-1)*n+j, j));
CROSSREFS
Column k=0-7 give: A000007, A001477(n+1), A000302, A006256, A078995, A079678, A079679, A079563.
Main diagonal gives A358145.
Cf. A358146.
Sequence in context: A357499 A368506 A342133 * A334781 A291656 A209063
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 31 2022
STATUS
approved