OFFSET
1,1
COMMENTS
Dickson's conjecture implies there are infinitely many terms where q = p+2, r = p+6 and s = p+8; the first two of these are 11 and 55331.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3) = 33071 is a term because 33071, 33073, 33083, 33091 are four consecutive primes with (2*33071+33073)/5 = 19843 and (33083+2*33091)/5 = 19853 prime.
MAPLE
Res:= NULL: count:= 0:
q:= 2: r:= 3: s:= 5:
while count < 50 do
p:= q; q:= r; r:= s; s:= nextprime(s);
t:= (2*p+q)/5; u:= (r+2*s)/5;
if (t::integer and u::integer and isprime(t) and isprime(u))
then
count:= count+1; Res:= Res, p;
fi
od:
Res;
MATHEMATICA
Select[Partition[Prime[Range[45000]], 4, 1], PrimeQ[(2*#[[1]] + #[[2]])/5] && PrimeQ[(#[[3]] + 2*#[[4]])/5] &][[;; , 1]] (* Amiram Eldar, Nov 01 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 01 2022
STATUS
approved