login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209631
Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to identity function, evaluated at k.
2
0, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 41, 5, 1, 1, 6, 33, 127, 196, 6, 1, 1, 7, 49, 280, 967, 1057, 7, 1, 1, 8, 68, 518, 2883, 8549, 6322, 8, 1, 1, 9, 90, 859, 6689, 34817, 85829, 41393, 9, 1, 1, 10, 115, 1321, 13310, 101841, 481477
OFFSET
0,6
COMMENTS
Motivation: The exponential transform applied n times to the constant function 1 evaluated at k was studied by E. T. Bell (see A144150).
LINKS
EXAMPLE
n\k [0][1][2] [3] [4] [5] [6]
[0] 0, 1, 2, 3, 4, 5, 6
[1] 1, 1, 3, 10, 41, 196, 1057 [A000248]
[2] 1, 1, 4, 20, 127, 967, 8549 [A007550]
[3] 1, 1, 5, 33, 280, 2883, 34817
[4] 1, 1, 6, 49, 518, 6689, 101841
[5] 1, 1, 7, 68, 859, 13310, 243946
[6] 1, 1, 8, 90, 1321, 23851, 510502
column3(n) = (3*n^2 + 11*n + 6)/2!
column4(n) = (18*n^3 + 93*n^2 + 111*n + 24)/3!
column5(n) = (180*n^4 + 1180*n^3 + 2160*n^2 + 1064*n + 120)/4!
column6(n) = (2700*n^5+21225*n^4+51850*n^3+41835*n^2+8510*n+720)/5!
MAPLE
# Implementation after Alois P. Heinz.
exptr := proc(p) local g; g := proc(n) option remember; local k;
`if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
A209631 := (n, k) -> (exptr@@n)(m->m)(k):
seq(lprint(seq(A209631(n, k), k=0..6)), n=0..6);
MATHEMATICA
exptr[p_] := Module[{g}, g[n_] := g[n] = Module[{k}, If[n == 0, 1, Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n}]]]; g]; A209631[n_, k_] := Nest[exptr, Identity, n][k]; Table[A209631[n-k , k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 11 2012
STATUS
approved