login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342133
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x + k*x^2).
4
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 14, 4, 0, 1, 8, 33, 48, 5, 0, 1, 10, 60, 180, 164, 6, 0, 1, 12, 95, 448, 981, 560, 7, 0, 1, 14, 138, 900, 3344, 5346, 1912, 8, 0, 1, 16, 189, 1584, 8525, 24960, 29133, 6528, 9, 0, 1, 18, 248, 2548, 18180, 80750, 186304, 158760, 22288, 10, 0
OFFSET
0,5
FORMULA
T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (-1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (-1/2)^(n-j) * binomial(j,n-j).
T(n,k) = sqrt(k)^n * U(n, sqrt(k)) where U(n, x) is a Chebyshev polynomial of the second kind.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 14, 33, 60, 95, ...
0, 4, 48, 180, 448, 900, ...
0, 5, 164, 981, 3344, 8525, ...
0, 6, 560, 5346, 24960, 80750, ...
MAPLE
T:= (n, k)-> (<<0|1>, <-k|2*k>>^(n+1))[1, 2]:
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
MATHEMATICA
T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * (-2)^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*(-2)^(-j)*binomial(n-j, j));
(PARI) T(n, k) = sum(j=0, n, (2*k)^j*(-2)^(j-n)*binomial(j, n-j));
(PARI) T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)));
CROSSREFS
Columns 0..5 give A000007, A000027(n+1), A007070, A138395, A099156(n+1), A190987(n+1).
Rows 0..2 give A000012, A005843, A033991.
Main diagonal gives (-1) * A109520(n+1).
Sequence in context: A138752 A357499 A368506 * A358050 A334781 A291656
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Mar 01 2021
STATUS
approved