OFFSET
1,6
COMMENTS
A lattice is vertically decomposable if it has an element that is comparable to all elements and is neither the bottom nor the top element. Otherwise the lattice is vertically indecomposable.
LINKS
P. Jipsen and N. Lawless, Generating all finite modular lattices of a given size, Algebra universalis, 74 (2015), 253-264.
J. Kohonen, Generating modular lattices of up to 30 elements, Order, 36 (2019), 423-435.
J. Kohonen, Cartesian lattice counting by the vertical 2-sum, arXiv:2007.03232 [math.CO] preprint (2020).
EXAMPLE
a(7)=3: These are the three lattices.
o o __o__
/ \ /|\ / /|\ \
o o o o o o o o o o
/|\ / / \|/ \_\|/_/
o o o o o o
\|/ \ /
o o
CROSSREFS
KEYWORD
nonn
AUTHOR
Jukka Kohonen, Mar 01 2021
STATUS
approved