login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109520
a(n)=the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,-1;n-1,2*(n-1)].
1
-1, -2, -14, -180, -3344, -80750, -2394792, -84150248, -3417051136, -157409163162, -8109659900000, -462005414448732, -28837128777928704, -1956971256267512966, -143459789419986793600, -11297467798871681250000, -951158499840260908777472
OFFSET
1,2
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
EXAMPLE
a(4)=-180 because if M is the 2 X 2 matrix [0,-1;3,6], then M^4 is the 2 X 2 matrix [ -99,-180,540,981].
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, -1, n-1, 2*(n-1)]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..19);
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, -1}, {n - 1, 2*(n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[Abs[M[n][[1, 2]]], {n, 1, 50}]
CROSSREFS
Sequence in context: A252727 A375868 A285270 * A370054 A210097 A230991
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved