login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342129
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x + k*x^2).
4
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, -1, 0, 1, 4, 6, 0, -1, 0, 1, 5, 12, 9, -4, 0, 0, 1, 6, 20, 32, 9, -8, 1, 0, 1, 7, 30, 75, 80, 0, -8, 1, 0, 1, 8, 42, 144, 275, 192, -27, 0, 0, 0, 1, 9, 56, 245, 684, 1000, 448, -81, 16, -1, 0, 1, 10, 72, 384, 1421, 3240, 3625, 1024, -162, 32, -1, 0
OFFSET
0,8
FORMULA
T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = (-1)^n * Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n-j,j) = (-1)^n * Sum_{j=0..n} (-k)^j * binomial(j,n-j).
T(n,k) = sqrt(k)^n * S(n, sqrt(k)) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 0, 2, 6, 12, 20, ...
0, -1, 0, 9, 32, 75, ...
0, -1, -4, 9, 80, 275, ...
0, 0, -8, 0, 192, 1000, ...
MAPLE
T:= (n, k)-> (<<0|1>, <-k|k>>^(n+1))[1, 2]:
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
MATHEMATICA
T[n_, k_] := (-1)^n * Sum[If[k == j == 0, 1, (-k)^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
PROG
(PARI) T(n, k) = (-1)^n*sum(j=0, n\2, (-k)^(n-j)*binomial(n-j, j));
(PARI) T(n, k) = (-1)^n*sum(j=0, n, (-k)^j*binomial(j, n-j));
(PARI) T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)/2));
CROSSREFS
Rows 0..1 give A000012, A001477.
Main diagonal gives (-1) * A109519(n+1).
Sequence in context: A322279 A350365 A331923 * A292861 A292133 A304482
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Feb 28 2021
STATUS
approved