login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295431
a(n) = (12*n)!*n! / ((6*n)!*(4*n)!*(3*n)!).
70
1, 4620, 89237148, 2005604901300, 47913489552349980, 1183237138556438547120, 29836408028165719837829700, 763223193205837155576920270520, 19728995249931089572476730815356700, 514073874001824145407534840409364592528, 13479596359042448208364688886016106250225648
OFFSET
0,2
COMMENTS
From Peter Bala, Jan 24 2020: (Start)
a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(12*n,6*n)*C(6*n,3*n)/C(4*n,n) and use Mestrovic, equation 39, p. 12).
More generally, for this sequence and the other integer factorial ratio sequences listed in the cross references, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. (End)
a(n*p) == a(n) ( mod p^3 ) are proved for all such sequences in Section 5 of Zudilin's article. - Wadim Zudilin, Jul 30 2021
LINKS
F. Beukers and Heckman, G., Monodromy for the hypergeometric function nFn-1", Inventiones mathematicae 95.2 (1989): 325-354.
Jonathan Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Wadim Zudilin, Congruences for q-binomial coefficients, arXiv:1901.07843 [math.NT], 2019.
FORMULA
G.f.: hypergeom([1/12, 5/12, 7/12, 11/12], [1/3, 1/2, 2/3], 27648*x).
From Karol A. Penson, May 08 2018 (Start):
Asymptotics: a(n) ~ (2^n)^10*(3^n)^3*sqrt(3/n)*(2592*n^2+72*n+1)/(15552*n^2*sqrt(Pi)), for n->infinity.
Integral representation as the n-th moment of the positive function V(x) on x = (0, 27648), i.e. in Maple notation: a(n) = int(x^n*V(x), x = 0..27648), n=0,1..., where V(x) = 3^(3/4)*sqrt(2)*hypergeom([1/12, 5/12, 7/12, 3/4], [1/6, 1/2, 2/3], (1/27648)*x)*GAMMA(3/4)/(36*sqrt(Pi)*x^(11/12)*GAMMA(2/3)*GAMMA(7/12))+3^(1/4)*sqrt(2)*cos(5*Pi*(1/12))*GAMMA(2/3)*csc((1/12)*Pi)*GAMMA(3/4)*hypergeom([5/12, 3/4, 11/12, 13/12], [1/2, 5/6, 4/3], (1/27648)*x)/(4608*Pi^(3/2)*GAMMA(11/12)*x^(7/12))+3^(1/4)*cos(5*Pi*(1/12))*GAMMA(11/12)*hypergeom([7/12, 11/12, 13/12, 5/4], [2/3, 7/6, 3/2], (1/27648)*x)/(6912*sqrt(Pi)*GAMMA(2/3)*GAMMA(3/4)*x^(5/12))+7*3^(3/4)*sin(5*Pi*(1/12))*GAMMA(2/3)*GAMMA(7/12)*hypergeom([11/12, 5/4, 17/12, 19/12], [4/3, 3/2, 11/6], (1/27648)*x)/(2654208*Pi^(3/2)*GAMMA(3/4)*x^(1/12)). The function V(x) is singular at both edges of its support and is U-shaped. The function V(x) is unique as it is the solution of the Hausdorff moment problem. (End)
D-finite with recurrence: n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -24*(12*n-11)*(12*n-1)*(12*n-5)*(12*n-7)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
MAPLE
seq((12*n)!*n!/((6*n)!*(4*n)!*(3*n)!), n=0..10); # Karol A. Penson, May 08 2018
MATHEMATICA
Table[((12n)!n!)/((6n)!(4n)!(3n)!), {n, 0, 20}] (* Harvey P. Dale, Sep 14 2019 *)
PROG
(PARI)
r=[12, 1]; s=[6, 4, 3];
p=[1/12, 5/12, 7/12, 11/12]; q=[1/3, 1/2, 2/3];
C(r, s) = prod(k=1, #r, r[k]^r[k])/prod(k=1, #s, s[k]^s[k]);
u(r, s, N=20) = {
my(f=(v, n)->prod(k=1, #v, (v[k]*n)!));
apply(n->f(r, n)/f(s, n), [0..N-1]);
};
u(r, s, 11)
\\ test 1:
\\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N=200; x='x+O('x^N); u(r, s, N) == Vec(hypergeom(p, q, C(r, s)*x, N))
\\ test 2: check consistency of all parameters
system("wget https://oeis.org/A295431/a295431.txt");
N=200; x='x+O('x^N); w = read("a295431.txt");
52==vecsum(vector(#w, n, u(w[n][1], w[n][2], N) == Vec(hypergeom(w[n][3], w[n][4], C(w[n][1], w[n][2])*x, N))))
CROSSREFS
The 52 sporadic integral factorial ratio sequences:
Idx EntryID u(r,s) dFd-1
---+---------+--------------+-----------------------------------------------+
1 A295431 [12,1] [1/12,5/12,7/12,11/12]
[6,4,3] [1/3,1/2,2/3]
2 A295432 [12,3,2] [1/12,5/12,7/12,11/12]
[6,6,4,1] [1/6,1/2,5/6]
3 A295433 [12,1] [1/12,1/6,5/12,7/12,5/6,11/12]
[8,3,2] [1/8,3/8,1/2,5/8,7/8]
4 A295434 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]
[8,6,1] [1/8,3/8,1/2,5/8,7/8]
5 A295435 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]
[6,5,4] [1/5,2/5,1/2,3/5,4/5]
6 A295436 [12,5] [1/12,1/6,5/12,7/12,5/6,11/12]
[10,4,3] [1/10,3/10,1/2,7/10,9/10]
7 A295437 [18,1] [1/18,5/18,7/18,11/18,13/18,17/18]
[9,6,4] [1/4,1/3,1/2,2/3,3/4]
8 A295438 [9,2] [1/9,2/9,4/9,5/9,7/9,8/9]
[6,4,1] [1/6,1/4,1/2,3/4,5/6]
9 A295439 [9,4] [1/9,2/9,4/9,5/9,7/9,8/9]
[8,3,2] [1/8,3/8,1/2,5/8,7/8]
10 A295440 [18,4,3] [1/18,5/18,7/18,11/18,13/18,17/18]
[9,8,6,2] [1/8,3/8,1/2,5/8,7/8]
11 A295441 [9,1] [1/9,2/9,4/9,5/9,7/9,8/9]
[5,3,2] [1/5,2/5,1/2,3/5,4/5]
12 A295442 [18,5,3] [1/18,5/18,7/18,11/18,13/18,17/18]
[10,9,6,1] [1/10,3/10,1/2,7/10,9/10]
13 A295443 [18,4] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[12,9,1] [1/12,1/3,5/12,7/12,2/3,11/12]
14 A295444 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
[9,4,1] [1/9,2/9,4/9,5/9,7/9,8/9]
15 A295445 [18,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[9,6,5] [1/5,1/3,2/5,3/5,2/3,4/5]
16 A295446 [10,6] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
[9,5,2] [1/9,2/9,4/9,5/9,7/9,8/9]
17 A295447 [14,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[9,7,1] [1/9,2/9,4/9,5/9,7/9,8/9]
18 A295448 [18,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[9,7,6,1] [1/7,2/7,3/7,4/7,5/7,6/7]
19 A295449 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
[7,4,3] [1/7,2/7,3/7,4/7,5/7,6/7]
20 A295450 [14,6,4] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[12,7,3,2] [1/12,1/3,5/12,7/12,2/3,11/12]
21 A295451 [14,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[7,5,3] [1/5,1/3,2/5,3/5,2/3,4/5]
22 A295452 [10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
[7,5,3,2] [1/7,2/7,3/7,4/7,5/7,6/7]
23 A295453 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[9,5,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
24 A295454 [30,9,5] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[18,15,10,1] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
25 A295455 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[12,5,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
26 A295456 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,12,10,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]
27 A295457 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[8,6,5] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]
28 A295458 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,8,6] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]
29 A295459 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[10,4,3] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]
30 A295460 [30,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,6,4] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]
31 A211417 [30,1] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,6] [1/5,1/3,2/5,1/2,3/5,2/3,4/5]
32 A295462 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
33 A295463 [15,7] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[14,5,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
34 A295464 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,7,6] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
35 A295465 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,12,10,1] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]
36 A295466 [15,6,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[12,5,3,2] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]
37 A295467 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[8,5,3] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]
38 A295468 [30,5,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,8,6,1] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]
39 A295469 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[12,10,1] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
40 A295470 [20,6,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[12,10,3,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]
41 A295471 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,8,3] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]
42 A295472 [20,3,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,8,6,1] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]
43 A061164 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,7,4] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
44 A295474 [20,7,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[14,10,4,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
45 A295475 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,9,4] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
46 A295476 [20,9,6] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[18,10,4,3] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
47 A295477 [24,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,8,5] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]
48 A295478 [24,5,2] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,10,8,1] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]
49 A295479 [24,4,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,8,7,2] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
50 A295480 [24,7,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[14,12,8,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
51 A295481 [24,4,3] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,9,8,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
52 A295482 [24,9,6,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[18,12,8,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
Cf. A304126.
Sequence in context: A260054 A253115 A189983 * A338337 A237634 A051649
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Nov 22 2017
STATUS
approved